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Abstract 

 The purpose of this research is to design and implement a comprehensive mission 

planning system for swarms of autonomous aerial vehicles.  The system integrates 

several problem domains including path planning, vehicle routing, and swarm behavior. 

  The developed system consists of a parallel, multi-objective evolutionary 

algorithm-based path planner, a genetic algorithm-based vehicle router, and a parallel 

UAV swarm simulator.  Both the path planner and the UAV swarm simulator are 

developed on AFIT’s Beowulf parallel computer clusters. 

  An extensive set of tests are performed to validate the system components as well 

as the system integration.  Tests focus on two primary objectives: efficiency and 

effectiveness. 

  The simulator is interfaced with a visualization system that serves as both an 

iterative design tool and as a mission playback tool.  As a design tool, the visualization 

system provides rapid feedback, allowing developers to quickly observe the effects of 

model changes on its behavior.  As a mission playback tool, decision makers and mission 

planners can view mission scenarios played out with different sets of parameters.    

  Novel aspects of this research include: integrating terrain following technology 

into a swarm model as a means of detection avoidance, combining practical problems of 

path planning and routing into a comprehensive mission planning strategy, and the 

development of a swarm behavior model with path following capabilities. 

  The culmination of this effort is the development of an extensible developmental 

model for swarm behavior.  Discussions on the of the system’s capabilities and 

limitations are presented along with recommendation for further development.  
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AFIT UAV SWARM MISSION PLANNING AND PARALLEL SIMULATION 

SYSTEM 

 

 

 

1. Introduction 

 

 

1.1. Problem Statement 

 Path planning is the process of designing a sequence of states through which an 

object must assume in transiting from an initial state to a goal state [28].  Path planning 

optimization is a process that proscribes a particular plan for reaching a goal state from 

an initial state at a minimal cost.  A path planning algorithm is a sequence of steps taken 

to calculate a path plan given knowledge of the path environment and a set of conditions 

or constraints that must be adhered to.  Many successful path planning algorithms have 

been developed over the years [5] [8] [9] [22] [44] [59] [67] [68].  These algorithms vary 

in their effectiveness and efficiency based primarily on the specific formulation of the 

path planning problem and the number of variables and constraints required to solve the 

problem. 

 The Vehicle Routing Problem (VRP) is defined as the task of assigning a set of 

vehicles, each with a limited range and capacity, to a set of locations or targets that must 

be visited [62].  The VRP is an NP-complete problem [21].  Such problem classes do not 

lend themselves to deterministic problem solving methods because the runtime of these 

approaches grows exponentially with the problem size.  Many stochastic methods have 

been used to provide “good” solutions to the VRP in reasonable time [49][62].  These 
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stochastic methods achieve their results by generating feasible solutions and then 

improving these results through successive refinements using heuristics.  In all of these 

methods, the set of inputs to the problem includes a cost associated with traveling from 

one target or location to another.  These costs can be represented simply as the distance 

between the locations or they can contain other costs associated with the problem’s 

constraints.  The costs are usually stored in a table or matrix, and are referenced 

continuously by the algorithm to compute the overall cost of a particular solution.   

 Representing cost as a fixed input is adequate for routing problems in which 

distances between targets are large enough to ignore the added path lengths resulting 

from having to make series of turns in order to change heading from one location to 

another.  However, when the target layout is such that the distances between the targets 

are as near as several turn radii of an aircraft apart, then the cost of traveling between any 

two targets must consider the heading at which the aircraft arrived at the initial location 

and the heading the aircraft must assume to vector itself towards the next target. 

 Taking this into account, algorithms that solve the VRP must calculate the cost of 

every assignment from scratch in order to accurately represent the cost associated with 

that assignment.  In this research, a path planning algorithm is developed that simplifies 

cost calculations for the set of possible paths through a given set of targets by first 

considering target triplets, each consisting of a start node, midpoint, and end node.  The 

algorithm calculates the optimal path through each triplet, and these triplet paths are 

concatenated with other triplets to quickly and accurately calculate the actual cost of a 

vehicle assignment.  This information is tabularized and fed in as inputs to programs such 

as the Genetic Vehicle Router (GVR) [49] where good assignments can be made; but this 
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time, the costs associated with these assignments is more representative.  The goal is not 

merely to calculate the true cost of a particular assignment made by the GVR but to 

influence the GVR to make better assignments using the more complete cost information.  

 

1.2 Fundamental Concepts of Research 

 

 This section describes the major research areas and concepts used in this research.  

First, a brief description of evolutionary algorithms and their application as a mission 

planning system are given.  Next, the concept of Terrain Following is defined.  The 

section concludes with a brief discussion on parallel discrete event simulation (PDES). 

 

 1.2.1 Evolutionary Algorithms.  High dimension optimization problems can not be 

solved in a reasonable time by traditional, deterministic search algorithms.  Their time 

complexity scales exponentially with the problem size thus prohibiting the employment 

of exhaustive search methods.  Evolutionary algorithms (EAs) use biologically-inspired 

methods to create and evolve solutions in a reasonable amount of time [2] [38].  

Populations of candidate solutions evolve through the use of genetic operators such as 

selection, recombination, and mutation.  After multiple generations members of the 

population tend to converge to near-optimal solutions.   

 In optimization problems, EAs attempt to find the optimum (min or max) cost 

solution from a set of candidates.  This cost can represent a single datum calculated by an 

evaluation function, or it can represent an aggregate of cost functions.  When problems 

require minimization of multiple competing, cost elements, a trade-off is established 

between the set of competing requirements.  In these instances, multi-objective 

evolutionary algorithms (MOEAs) can provide a decision maker with a variety of 
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candidate solutions, each representing a level of optimization of one parameter with 

respect to another [11][18].  MOEAs produce a set of solutions where each solution 

represents an optimal cost in terms of one parameter for a corresponding cost associated 

with one or more others.  Presenting decision makers with a set of choices allows them to 

see the trade-offs between competing objectives and make choices based on acceptable 

levels of these objectives. 

 In this research, an MOEA is developed for path planning where the objectives 

are cost, (encompassing distance traveled and the amount of climbing a vehicle does), 

and risk (resulting from flying through areas of threat).  The solution set contains a 

selection of routes such that each route has the lowest cost associated with a particular 

level of risk and vice versa.  The development of this MOEA is detailed in Chapters 3 

and 4 while evolutionary algorithms are described from a historical perspective in 

Chapter 2.  

 

 1.2.2 Terrain Following.  Terrain following (TF) is a mode of flight in which an 

aircraft maintains a fixed altitude above ground level (AGL) and flies low (on the order 

of a few hundred feet) through an area of interest.  Naturally, this type of flying involves 

a great deal of climbing and descending, a costly operation.  DoD terrain following 

missions have been carried out for many years dating back to Cold War missions flown 

by F-111 Raven aircraft [19].  More recently TF missions have been flown by U.S. 

Special Operations Command (USSOCOM) in using MC-130 gunships and a variety of 

rotary-wing platforms [55]. 

 The idea behind TF is to remain hidden from enemy air defenses without using 

stealth technology.  This technique of hiding within rugged terrain is known as terrain 
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masking.  Terrain masking (TM) algorithms determine a route of flight in which an 

aircraft can move toward a target or location of interest while remaining masked from 

enemy air defense radar by the surrounding terrain.  Often routes calculated by TM 

algorithms have significant climbing and descending costs associated with them.  The 

process of picking the best-masked routes with the least possible cost in terms of 

climbing and overall distance traveled is known as Terrain Following Optimization 

(TFO).  Current terrain following Optimization algorithms developed by Air Force 

Research Laboratory (AFRL) use a set of deterministic operators that produce an optimal 

route selected from a limited subset of possible route choices.  In this research, the multi-

objective route optimization algorithm seeks to find better routes by exploring larger 

areas of the search space. 

 TF operations and TM technology can benefit the development of swarms of 

autonomous UAVs.  First, swarm components need to be inexpensive and potentially 

expendable.  Naturally, stealth technology in individual swarm components would be 

both costly and their loss could result in undesirable disclosure of technology to enemy 

forces.  Secondly, even if stealth technology is not too costly for swarm elements, 

maintaining the stealth property of an entire swarm would require highly regulated flight 

patterns.  Such patterns would inhibit the self-organizational exploratory nature of 

autonomous UAVs.  By incorporating TM technology into swarm elements, swarms 

could gain the benefits of remaining hidden without the expense of stealth technology 

and the computational expense of maintaining a stealthy formation.     

 

 1.2.3 Simulation and Visualization.  Routing algorithms and vehicle assignments 

represent a static view of a mission.  Simulation and visualization of a mission enhances 
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the commander’s view of the battle plan and identifies some potential pitfalls.  To this 

end, the routes and assignments generated from the given problem instances are 

visualized using the SPEEDES parallel discrete event simulator and the SkyView 

visualization tool [56][57].  Real world digital terrain data is used by the algorithms and 

shown in the visualizations along with realistic threat representation.  Additional 

information about SPEEDES and SkyView are contained in Chapter 4. 

 Currently, AFIT maintains a UAV swarm simulation [13] [23] which models 

various swarm behaviors developed for self-organizing autonomous air vehicles.  This 

research adds a routing capability to the model so that swarms can proceed to assigned 

targets while still exploring and exploiting the battle space for targets of opportunity 

discovered by their sensors.  The initial routes and assignments used in the simulation are 

those generated from the problem instances in this research.  

  

1.3 Research Goal, Objectives and Approach 

 

 The research goal is the improvement of routing and mission planning capabilities 

for UAVs and terrain following air vehicles.  In this effort there are three main 

objectives: 

 1.  Develop a multi-objective evolutionary algorithm for efficient path planning 

 2.  Develop a parallel system that computes individual route segments for use in a 

GVR algorithm 

3.  Improve AFIT’s parallel swarm simulator by incorporating path-following 

capabilities with existing swarm behavior and observe the extent to which limitations of 

fixed-wing aircraft constrain model behavior. 

    



 1-7 

   1.3.1 Objective 1:  Path Planning Algorithm.  The first objective concerns the 

development of a robust path planning algorithm for terrain following missions.  Since all 

routes have both a cost and a risk associated with them, path planning is naturally 

expressed as a multi-objective minimization problem. Most often, decreasing the cost of 

the path, i.e. the path length and the amount of climbing required to navigate the terrain, 

results in increasing the risk associated with enemy air defenses.  Likewise, a path 

generated to avoid intersection with all enemy air defense radar systems results in 

increased path cost.  Single objective problem formulations for path planning often use 

constraints such as obstacle and threat avoidance and then calculate the least-cost path 

available that adheres to all constraints [53][68].  Other single objective problem 

formulations treat constraints as components of the solutions fitness [67].  Problems 

defined in this way have weights assigned to each objective and the resulting fitness is an 

aggregation of component scores. The common disadvantage of these approaches is two 

fold.  First, a risk free path may not exist or its cost may exceed the capabilities of the 

aircraft.  Second, paths containing an acceptable level of risk may have a substantially 

lower cost than a completely risk adverse path if one exists.  A multi-objective objective 

approach provides a commander with a choice of routes with cost proportional to their 

level of risk.  This empowers the commander to choose the acceptable level of risk and 

obtain the least-cost path associated with that choice.  Due to the intractability of the path 

planning problem, an evolutionary approach is developed to produce low cost routes in a 

reasonable amount of time.  The multi-objective evolutionary algorithm design for path 

planning is described in detail in Chapter 3.  
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Validation of the path planning component is accomplished through a set of 

experiments (see section 5.1) aimed at testing the planner’s ability to produce feasible 

routes, to avoid terrain, and minimize exposure.  Analysis of this data accompanies 

visualizations of solutions to various problem instances. (See Section 6.1). 

 

   1.3.2 Objective 2:  Parallelization and integration into GVR algorithm.  The 

Genetic Vehicle Routing algorithm [49] [61] uses an evolutionary approach to find an 

optimal assignment of vehicles to targets for combat or reconnaissance missions.  The 

algorithm uses as its set of inputs, the cost associated with traveling between any two 

target locations.  This cost reflects only the Euclidian distance between the targets.  In 

order to include the cost incurred by turning from one location and proceeding to another, 

which increases the path length, the actual cost of traveling between two locations must 

include the direction from which the aircraft approached the first target and the direction 

the aircraft will depart the second target in route to a subsequent target.   By calculating 

the cost associated with traveling from each location to every other through an 

intermediate point, the true cost of an entire target assignment can be calculated by 

concatenating the set of triplets to construct the route.  The generation of optimal route 

triplets scales as O(n
3
) compared to the O(n

2
) cost of optimizing pair-wise links.  This 

limits scalability but is less costly than the exponential alternative of enumerating and 

calculating all possible permutations of complete route assignments.  To offset some of 

the cost of enumerating triplets, the path planning algorithm is parallelized, solving 

multiple triplets concurrently.  The output data from the path planner is then given as 

input to the GVR algorithm which has been modified to use this new data in its 
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evaluation function.  The result is an optimal assignment of aircraft to targets based on 

the true costs of completing the routes. 

Testing on this component focuses on the efficiency and scalability of the 

parallelization of the path planner and its ability to answer queries from the vehicle 

router. 

 

   1.3.3 Objective 3:  Parallel Swarm Simulation Model.  AFIT’s swarm 

simulation model [13][23] models a swarm of autonomous air vehicles with a set of three 

behaviors.  The first behavior is a tendency to remain together.  The second behavior is a 

tendency to maintain a safe distance from one another.  The third behavior is for the 

swarm members to align themselves together toward a particular direction.  The swarm 

simulation is extended in this research to include a routing capability that guides the 

swarm along a route generated by the path planner and the GVR optimizer while still 

adhering to the three existing behaviors.  Testing of this research component focuses on 

the ability of the swarm model to conform to established rules while adding new 

capabilities.  The design of experiments in Section 5.2 provide metrics to measure swarm 

formation correctness and to determine the effects of additional functionality on the 

swarm’s ability to adhere to the formation rules given in Section 3.5.  While the swarm 

model includes many abstractions, it attempts to account for limitations in aircraft 

performance to the extent that they limit swarm behavior.  Figure 1.1 gives a sample 

visualization of the swarm model developed in this research.  
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Figure 1.1 Swarm Model Visualization. 

1.4  Sponsors 

 This research is sponsored by the Information Directorate, Air Force Research 

Laboratory (AFRL), Wright Patterson Air Force Base, Ohio.  The mission of the 

Information Directorate is “the advancement and application of information systems, 

science, and technology to meet Air Force unique requirements for Information 

Dominance and its transition to air and space systems to meet war fighter needs.”  This 

research supports this mission by offering a capability to enhance mission planning and 

integration of autonomous vehicles into the mission planning process.  The intent is to 

reduce mission planning time, develop more efficient mission plans and provide 

commanders with information needed to make resource decisions based on trade-offs.  

Specific points of contact concerning the sponsorship of this research include Mr. David 

Zann and Mr. Derryl Williams (AFRL/IFSC). 
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 This research is also supported by a branch of the AFRL sensors applications and 

demonstrations division (AFRL/SNZ), specifically, the Virtual Combat Laboratory 

(AFRL/SNZW).  The Virtual Combat Laboratory conducts advanced development field 

and flight test demonstrations and evaluations.  They maintain a UAV simulation model 

along with a suite of visualization tools.  This research continues the ongoing relationship 

between AFIT/ENG and AFRL/SNZW in which both parties share information on and 

enhance the capabilities of UAV swarm simulations.  The specific point of contact is Mr. 

Mike Foster (AFRL/SNZW). 

 

 

1.5. Thesis Overview 

 The remaining chapters assume the reader has a basic knowledge in the areas of 

combinatorics, evolutionary computation, self-organization, and unmanned aerial 

vehicles.  Extensive references provided throughout provide the reader with more 

extensive background information in these areas.   

Chapter 2 of this thesis defines and develops the concepts behind this research 

and gives a historical perspective on related research.  Chapter 3 details the methodology 

used in this research and illustrates the high-level design strategies used in the 

development of a multi-objective routing algorithm and its use as inputs to VRP problem 

solvers.  Chapter 4 shows the development of the specific implementation model used to 

achieve the research objectives.  Chapter 5 describes the design of experiments used to 

evaluate the effectiveness and efficiency of the tools developed in this research.  This 

includes the testing methodology, development of benchmarks and the scope of the 

experiments performed.  Chapter 6 discusses the test results and evaluates the 
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effectiveness of the research.  Chapter 7 presents conclusions resulting from this research 

and makes specific recommendations for future swarm-based research. 
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2. Background and Historical Perspective 

 

Mission Planning for swarms of autonomous aerial vehicles requires an efficient 

assignment of vehicles or sub-swarms to targets, a set of efficient, feasible paths for 

vehicles to follow, a set of swarm behaviors that allow the swarm members to reach their 

targets while maintaining their collective swarm properties, and a detailed simulation of 

the mission to ensure objectives are met.  This chapter considers historical approaches to 

solving these individual problems as well as a discussion of ways to unify these problem 

domains into a comprehensive problem statement.  A discussion on path planning is 

given followed by the development of the vehicle routing problem.  The section 

concludes with various approaches to swarm modeling and their applications. 

 

2.1 Path Planning 

 

Path planning for air vehicles is a subset of a broader set of general path planning 

problems.  All path planning problems and the algorithms used to solve them consist of 

some initial condition, objective, and a set of actions that completely connect the initial 

condition to the objective.  However, there are many ways to specify a path planning 

problem.  The method selected is often linked to the algorithm used to solve the problem.  

Two broad categories of path planning problems and approaches dominate the research.  

The first category defines the problem in what is known as a configuration space.  

Problem formulations of this type involve determine the set of desired actions (torques, 

rotations, and other forces) needed to move a system from an initial state to a goal state.  

The second category of problem formulations, trajectory spaces, involves generating a set 
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of feasible trajectories to move a vehicle from an initial location to a goal location 

through a defined space. In this section a historical view of path planning problems of 

both configuration and trajectory spaces is presented.   

 

2.1.1  Configuration Spaces.  Historically, configuration space-based (C-space) 

problems have been applied to robotic motion. However, research has also used this 

domain to define problems for general 3-D motion.  This section develops the notion of a 

C-space and examines some of the problems and algorithms that have been created in this 

domain. A Configuration Space, CCCC  [30] is defined as the position (or configuration) of an 

object completely determined by a single point having n independent parameters as 

coordinates.  The space CCCC ,,,, is divided into two general subspaces, CCCC obs and CCCC free. 

Configurations which are invalid because of constraints violations or collisions belong to 

CCCC obs. Those configurations satisfying constraints and resulting in collision-free states 

belong to CCCC free. In the configuration space, the path planning problem consists of finding a 

continuous curve (representing a path for a single geometrical point) that connects the 

points representing the initial and the final configuration of the object, and lies entirely 

within CCCC free.  In figure 2.1, [34] a 2-jointed robot arm is placed among a set of obstacles.  

The arm’s joints can be rotated through a set of angles (q0, q1).  An assignment of these 

angles results in either a valid configuration if the rotation of the joints does not result in 

a collision, or an invalid configuration, CCCC obs, if the rotation causes the arm to collide with 

an obstacle. 
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Figure 2.1.  A Two DOF Arm in an Operational Space with Obstacles [34]. 

 

The configuration space for this problem is given in figure 2.2.  The axes represent 

possible angular rotations of the joints q0 and q1 and the space contains valid and invalid 

sub-spaces corresponding to the assignment of these angles.  A valid region of the 

configuration space represents the set of solutions to the problem. 

                                                   

Figure 2.2. Configuration Space Corresponding to Figure 2.1 [34]. 

 

Configuration space-based problems have been solved using two main 

approaches: retraction methods, and decomposition methods [34].  In a retraction method, 
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the dimensionality of the problem is reduced by considering sub-manifolds in the 

configuration space.  A manifold is a term used to describe a region such that for every 

point, there is a set of neighborhood points that are topologically similar [66].  In a 

decomposition method, a characterization of the search space is partitioned into regions 

that are free of obstacles from which the search is conducted. These methods are 

complete but it has been shown that the retraction or decomposition of a search graph is 

an NP-complete problem [6].  Thus, these methods are inefficient for high-order 

dimension problems. 

 Gradient-based approaches have been used successfully for path planning in 

holonomic systems [7] [35] [65].  A holonomic system is one where if the system is 

returned to its original configuration then it also returns to its original position.  An 

example of this would be a car on a track.  Gradient-based methods include artificial 

potential fields.  A naive artificial potential field is created by determining the distance to 

goal from each grid point in the search space.  To traverse the field, the vehicle moves 

down its gradient to the lowest-values adjacent grid point.  More detailed potential fields 

have been created as in the work of Batavia [4].  In his algorithm Batavia builds a 

potential field that combines the distance metric with a traversability metric that encodes 

the degree of difficulty a robot would have moving through each grid point.  This level of 

difficulty ranges from impassable, as in the case of a solid obstacle in the cell to smooth.  

This difficulty information is combined with the distance field to make a single artificial 

potential field that represents the assumed cost of reaching the goal more completely.  

One difficulty with this approach is its scalability.  Because every grid in the search space 

must be read to build the field, if the linear dimension is doubled, than the search space is 
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quadrupled.  Extending the method to three dimensions would cause an 8-fold increase in 

the search space.      

 Randomized tree-based methods have been successful in solving planning 

problems for non-holonomic systems [26] [29] [41].  Pure tree search methods are 

generally not viable for solving NP-complete problems because they are exhaustive.  

Randomized tree-based methods are probabilistic or probabilistically complete depending 

on how they are used.  LaValle [29] developed  a concept called Rapidly-Exploring 

Random Trees.  Rapidly-Exploring Random Trees (RRTs) is a randomized data structure 

designed for a broad class of path planning problems.  RRTs have been used successfully 

in robotic motion planning, wheelchair feasibility routes [29], Mars Rover motion 

software, and numerous pharmaceutical applications.  According to Kuffner [25], RRTs 

alone are not sufficient to solve path planning problems but can be incorporated into 

other path planning algorithms as an efficient local search tool. 

 A generalized RRT begins with a single node, qinit.  The algorithm runs through a 

specified number of iterations in which a new point qrand is chosen from a random 

distribution, the nearest neighbor qnear in the tree to that point is identified, a point lying 

along the line between qrand and qnear at a distance r from qnear is chosen as a candidate 

node in the graph.  If this point lies in an obstacle-free area, then this node is added to the 

graph forming a new configuration.   A novel aspect of the RRT algorithm is its method 

of searching with a bias toward unexplored regions of the search space.  The key to 

understanding how this is done is by examination of the nearest neighbor operator and the 

Voronoi diagram associated with the graph.  A Voronoi diagram partitions a set of 

vertices into regions such that any space within the region lies closer to the vertex 
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contained within the region than it does to any other vertex in the graph.  Imagine a small 

set of points clustered at the center of a search space.  Within the center of the cluster, the 

Voronoi regions would be small.  On the frontier of the cluster, Voronoi regions would 

be large and extend out to the limits of the search space.  With the nearest neighbor 

operator, it is more likely that a random point selected is nearer to one of the larger 

Voronoi regions along the frontier than it would be to a smaller interior region.   

 Several successful path planning methods that use RRTs have been developed.  

RRT-Connect is one variant of  the RRT in which two trees are developed, one growing 

out from the initial node and one growing out from the goal node.  After the trees are 

allowed to grow, a connect algorithm is run to try to connect the two trees.  At this point, 

a solution to a single-query path planning problem is satisfied [25].  The authors of RRT 

connect acknowledge that the algorithm performs poorly in areas with many obstacles. 

 Sampling-based methods of path planning have employed RRTs as an element of 

the overall algorithm [26] [41].  In [41], a probabilistic roadmap planner (PRP) is 

combined with an RRT local planner to create what is called the Sampling-based 

Roadmap of Trees (SRT).  The PRP is a global planning tool that samples random 

configurations from the set of all collision-free paths.  RRTs are then used to explore 

these initial configurations by building trees from nodes found in the PRP.  The idea of a 

roadmap is that sections of route in a single query can be reused for later queries.  The 

authors maintain that RRTs are chosen as one possible tool for the local tree search and 

that similar success has been achieved with Expansive Space Trees (ESTs) [29]. 

Another RRT-inspired planning algorithm is Path-Directed Subdivision Tree 

Exploration Planner or PDST-Explore [26].  The algorithm deliberately chooses a non-
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uniform, directed tree search to avoid searching far-off areas of the search space.  RRTs, 

with their bias toward unexplored regions of the search space, search the four corners of a 

grid equally without regard to the location of the destination with respect to the direction 

of the current location. 

Simulated Annealing (SA) has also been applied to solve a class of path planning 

problems known as mobile manipulator path planning problems by searching the 

configuration space [8].  The SA approach searches ordered sets of vectors applied to 

robots to perform their tasks and move through their workspace.  This approach requires 

complete knowledge of the terrain and is suitable for well-known environments such as 

an automated production line. 

A hybrid approach combining the PRM and SA was developed by Sanchez [50].  

This method uses configurations generated by Kavraki’s PRM and from these, used SA 

as a local search to find optimal paths.  SA uses the concept of “local neighborhoods to 

restrict the search space at any particular time. The neighborhoods in the context of 

configuration spaces were defined in terms of the maximum allowable change of a given 

parameter in a given configuration to reach another configuration.         

 

  2.1.2 Trajectory Spaces.  Unlike configuration spaces which consider 

transforming states to reach a solution, searches in the trajectory space involve creating a 

single path between the start and the goal node which may or may not be feasible.  The 

path is refined and adjusted until a feasible and low cost path is found.  Many path 

planning algorithms have solved problems with searches in the trajectory space.   
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 In [3] a straight line segment joins the initial and final positions.  The path 

naturally crosses forbidden regions.  The algorithm progressively reduces the intersection 

of the path with obstacles.  Each iteration creates a randomly-generated sub-manifold 

containing the current path. It is then discretized on a grid and explored using dynamic 

programming.  The length of intersection of the path and the obstacles is used as the cost 

function in the dynamic program. 

Other trajectory space searches have been done using evolutionary computation 

(EC).  Inspired by the success of EC in solving many classes of problems, EC-based path 

planners have been developed. Many different problem representations have been 

considered.  In [67] the problem is stated simply as: given a vehicle and a description of 

the environment, plan a path between two specified locations which is collision-free and 

satisfies certain optimization criteria.  The optimization criteria given include: 

minimizing the path length, creating a smooth trajectory to avoid sharp turns, and 

maintaining a safe clearance between the paths and objects.  The Evolutionary 

Planner/Navigator (EP/N) was designed by Xiao and Michalewicz to solve this problem 

using an evolutionary approach.  In their work, each solution or chromosome is given as 

a linked list of coordinate pairs and an additional value indicating whether or not a given 

pair is in an obstacle-free region or not.  Every chromosome contains the starting point, 

goal point, and a variable amount of intermediate points representing a path from the 

starting location to the goal.  Chromosomes within the population are evaluated with 

three fitness functions each representing one of the three stated objectives.  The fitness of 

an individual is determined with a weighted sum of the three evaluation functions.  The 

weights are given as parameters and are used to control the relative emphasis of one 
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criterion over another.  A robust set of mutation operators are used to improve the set of 

candidate solutions in the population.  After a number of evolutionary cycles, the best 

path found is returned.  Through an extensive set of experiments, Xiao has shown that the 

EP/N usually returns a solution that is not far from known optimum at a fraction of the 

time it would take to perform an exhaustive search.  EP/N differs from traditional genetic 

algorithms in two important ways.  First, it uses a non-uniform chromosome length.  A 

disadvantage of this approach is that it constrains the selection of appropriate data 

structures.  Further, many GA software packages are available to speed development 

through the reuse of common GA operators and data structures.  Most of these such as 

the Genetic Algorithm Library (GALib) and the Genetic Algorithm Utility Library 

(GAUL) are not compatible with variable length chromosomes.  AFIT’s General Multi-

Objective Parallel Genetic Algorithm (GENMOP) allows for variable-length 

chromosomes but is currently available only in two application-specific versions [24].  

An advantage of having non-uniform chromosomes as it pertains to path planning is that 

it allows solutions to be completely specified without having to explicitly list every grid 

point or cell along the route. The second departure from traditional GAs in the EP/N is 

the use of heuristics in the genetic operators.  In a typical GA, mutation operators 

randomly flip bits of the solution or interchange values between one portion of the 

solution and another.  In a path planning problem where there is a necessary ordering of 

points along the path, such random operators are more often destructive rather than 

constructive.  For example, consider the following sequence of coordinate points that 

represent a path from a start point (0,0) to a goal point of (75,75). Pi = {(0,0), (12,4), 

(32,23), (48,37), (52,50), (68, 70), (75,75)}.  Now consider a common mutation operator, 
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the swap.  A swap of the points (12,4) and (68,70) would tremendously increase the 

length of the path.  Heuristics can be used to carefully steer an algorithm away from such 

problems by injecting problem domain information into the algorithm.  Xiao’s use of 

heuristics constrains the addition, deletion, and alteration of points to avoid destructive 

changes that can occur.  The parallel path planner presented in this research (Chapter 3) 

uses a similar problem definition, chromosomal structure, set of operators and 

evolutionary approach as is found in Xiao.   

Sugihara presents a GA for path planning in [59] that adds weighting factors into 

the evaluation function.  Unlike Xiao that treats obstacles as hard constraints, Sugihara 

distinguishes obstacles into two categories: pure obstacles and hazards.  Using this 

approach to defining the problem, obstacles are avoided at all costs but hazards are 

allowed albeit at an increase to the weighted cost of the path.  The obvious advantage to 

this problem formulation is that imperfect solutions (those that intersect hazards) can 

provide significantly shorter paths than perfect solutions (those that are hazard free).  In 

creating the problem instance, a planner could carefully decide between areas of 

mandatory avoidance (such as a no-fly zone, international border, etc) and areas that 

should be avoided or have minimal path intersection (such as enemy radar zones).  With 

this problem domain knowledge, the particular problem instance can be tuned so that the 

algorithm returns a desirable path.  Sugihara uses a more traditional GA than Xiao.  

Chromosomes are fixed length binary strings which encode a path that is x-monotone or 

y-monotone.  The path consists of points such that each point is directly adjacent to the 

points after and before it. Mutation operators then alter the distance and direction of these 

points randomly without constraint.  A limitation of the form of the solution is that the 
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adjacent cell requirement results in a series of turns that are always 0, 45, or 90 degrees.  

While ground vehicles may be able to handle this zigzag motion, such a path would not 

be appropriate for air vehicles which have defined limitations on their turn rates. 

Castillo reformulates Sugihara’s work into a multi-objective problem and solves it 

using a multi-objective evolutionary algorithm (MOEA) [9].  In the single objective 

problem, a weighted sum of costs is used in a single objective function.  In the multi-

objective version, two objective functions are defined: cost and risk.  The cost function 

measures the length of a candidate path while the risk function measures the amount of 

intersection a path has with a hazardous region.  The algorithm returns not a single 

solution but a set of Pareto Optimal solutions with which a decision maker can chose an 

optimal path for a desired level of risk.  In addition to using two separate cost functions, 

MOEAs have other differences from their single-objective counterparts.  First, MOEA’s 

tend to be a more effective with an elitist selection strategy rather than roulette wheel or 

tournament selection strategies which are commonly found in single-objective EAs 

[Cello and Lamont].  A comparative study among various MOEAs found that elitism 

converges more quickly and preserves good solutions [69].  Second, the use of adaptive 

mutation strategies, such as hyper-mutation, is more difficult to apply to multi-objective 

functions [9].  Hyper-mutation is a technique that varies the mutation rate as the solution 

quality of the fitness function decreases in successive generations [10] [15].  Since the 

objectives in an MOEA often compete with one another, it is difficult to respond to a 

drop off in solution quality.  The third difference follows directly from the first two and 

that is the selection criteria cannot be biased toward improvements in either of the 

objective functions individually.  With respect to path planning for air vehicles, Castillo’s 
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algorithm shares the same problem with Sugihara’s, namely paths must be represented in 

terms of adjacent cells which leads to sharp, un-navigable routes. 

Path planning is more constrained for UAVs than for mobile robots.  While 

smooth trajectories are a priority in [67], routes produced by robot path planning 

algorithms would not in general be suitable for air vehicles due to the dynamic 

constraints imposed by the flight characteristics of the aircraft.  Nikolos [39] offers an 

alternative path representation: B-spline curves.  Developed by Schoenberg in 1946 and 

computed via recursion in 1972 by Carl de Boor [17], B-splines are piecewise polynomial 

building blocks that are convolved recursively to form complex curves.  They can be 

completely specified using only a few control points called “knots.”  This compactness 

makes them suitable for use in evolutionary algorithms. 

 

In his research Nilolos evolves candidate paths for UAVs by randomly joining 

sets B-Spline curve segments.  The chromosomal representation of a solution consists of 

the control points of the individual segments which are evolved by standard 

recombination and mutation operators.   

Mittal and Deb [37] extended Nilolos’ work by creating a multi-objective version 

that optimizes both path length and risk.  In their formulation risk is given in terms of 

how close a given path comes to a known obstacle.  They further constrain the search 

with the following requirements: (i) the path must be collision-free with respect to solid 

obstacles; (ii) the angle between two successive segments must be below a specified 

threshold; and (iii) The maximum height of any point in the path must not exceed a 



 2-13 

specified upper limit.  The last constraint is given so that the UAV remains closer to the 

ground so as to avoid detection by an enemy.  

While B-splines can completely specify a path, they offer challenges to manned 

flight such as how would these curves be given to a pilot such that he or she could 

actually fly them?  Typically, a pilot is given a set of waypoints to fly which when 

mapped out, are shown as a set of continuous line segments.  Naturally, the aircraft flies a 

curved path when turning, but this curvature in the flight envelope is taken into account 

by specifying the turns in the route with sufficient margin for error.  The distinction 

between a waypoint that must be reached and one that the pilot must come within a 

certain distance of is made in the flight plan and is called the “flyover” variable in the 

route specification.  The paths given as B-splines would have to be approximated into 

line segments and then re-evaluated to ensure these new routes meet the turning 

constraints of the aircraft.  If the difference between the original path and the discretized 

segment set is significant, then any optimality assumed in the original path cannot be 

guaranteed in the modified path.  If this algorithm is to be applied for UAVs only, then 

the UAV mission controllers and designers are left with the task of computing all of the 

necessary control parameters so that the vehicle can fly the exact curve. 

In this research, paths are specified in line segments with restrictions on the 

degree of turn to ensure the path is navigable.  Further, the concept of terrain masking 

which was loosely developed in [37] is extended with a complete terrain masking 

algorithm developed by Air Force Research Laboratory.  The algorithm determines the 

maximum altitude (AGL) of an aircraft at a particular point such that at or below this 

altitude it is out of sight of a known threat.  This is known as inter-visibility.  In addition 
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to remaining out of sight of known threats, the terrain masking algorithm seeks to 

minimize the vehicle’s exposure to unknown threats.  This principle is known as 

“hidability.”  It calculates the number of nearby points from which a vehicle is visible at 

a given altitude over a given point.  Figures 2.4 and 2.5 illustrate the principles of inter-

visibility and hidability. 

                               

Figure 2.4 An Illustration of Intervisibility. 

 

             

Figure 2.5 An Illustration of Hidability. 
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2.2 The Vehicle Routing Problem        

 The vehicle routing problem (VRP) can be defined generally as the task of 

optimally assigning a set of vehicles to visit a set of targets such that the cost of the 

assignment is minimal.  It is an extension of the traveling salesman problem which is one 

of the most studied hard combinatoric problems of all time [2].  This section defines the 

VRP as a variant of the TSP, looks at evolutionary approaches used to solve it, and 

finally, connects the path planning problem to the VRP via a simple reformulation of the 

path planning problem definition. 

 

 2.2.1 The TSP and VRP defined.  The goal of the TSP is for a person to visit every 

city in his or her territory exactly once and return home while traveling the shortest 

distance possible [38].  The problem is defined as follows:  Given a complete undirected 

graph ( )EVG ,= that has a non-negative cost ( )ec  associated with each edge Ee ∈ , find a 

tour (an ordered set of all the cities in the graphG ) such that for all nodes ,,, Vwvu ∈  

( ) ( ) ( )wvcvucwuc ,,, +≤ .  This problem has been proven to be NP-complete [12].  The 

TSP is a historically significant problem because it is a generalization of many real-world 

problems in transportation, shipping, and routing [38].  One real-world application of the 

TSP is the vehicle routing problem which is also a generalization of an entire class of 

routing problems.  The capacitated vehicle routing problem (CVRP) is the simplest 

version of the VRP.  In the CVRP, a set of customers require a discrete amount of 

service.  There are a set of vehicles each with a known capacity.  The task is to optimize 

the assignment of vehicles to the customers so that the total distance traveled by the 

vehicles is minimized.  In most versions of this basic problem, there is the added 
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constraint that no vehicle can make a partial delivery of less than one unit of demand to a 

customer to be finished later by a second vehicle [62].  It is from this version of the 

problem that Russell defined his UAV routing problem [49].  Because the CVRP is an 

extension of the TSP it is also NP-complete.  The UAV routing problem consists of a set 

of targets L, a set of UAVs V, the set of traveling costs Q, the set of routes G, a distance 

function δ, a capacity function γ, and a demand function α.  The formal definition 

specified by Russell is as follows:   

           given ( ) ;0,0: >≥∀ illL iiα   ( ) 00 =lα and ivV ∀:  ( ) 0, >= kkviγ  

           compute: ( )
jiij llqQ ,: δ= and { }UU 00: lLLlgG k ×=  

           subject to: ( ) ( )∑ ∑ ∈∈ = ll LlGl αα  and U Lgl =∈ and I 0lGg =∈  

           minimize: ∑ =

||

1

Q

k kQ  

The particular application Russell addressed was a swarm of heterogeneous UAVs 

required to deliver an amount of munitions or reconnaissance payload to a static set of 

targets.  In his work Russell does not model threats as areas along the route, but rather by 

associating a threat level associated with each target.  In this way an additive cost 

function that includes risk as well as distance is generated for every link in the graph 

representing the battle space.  A shortcoming of this approach is that no attempt to avoid 

risk is made.  Further, the direction of approach has no impact on the amount of risk 

associated with the target.  Clearly this is an oversimplification.  If risk is to be 

considered as an optimization criterion, then the routing of a swarm must include a path 

planning algorithm that minimizes risk as well as distance.  The next section describes 

Russell’s approach to solving the UAV routing problem. 
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 2.2.2 Genetic Vehicle Representation.  Originally developed in [61], Russell uses 

Genetic Vehicle Representation (GVR) in his genetic algorithm for UAV routing.  GVR 

consists of a novel data representation, and original mutation and crossover operators.  

The key element of the encoding is that solutions explicitly provide the number of routes 

and their locations without significant decoding.  For crossover, two individuals C1 and 

C2 are chosen for selection.  A sub route r from C1 is inserted into a copy of C2. The 

position of the insertion is such that the distance between the insertion location and the 

first location r is minimized.  This is a departure from traditional crossover operators 

because it brings problem domain information into the operator.  It is clear that inserting 

points at random locations without regard to the structure of the tour would be destructive 

more often that constructive.   

 There are a total of four mutation operators used in GVR.  In the first, swap 

mutation, two locations within a solution are exchanged.  As the solution contains routes 

for different vehicles, the swap may change locations within a route or between two 

routes.  In either case, this operation maintains the same number of locations between the 

original solution and the resulting one.  The second mutation operator is inversion.  This 

operator takes a sub route of random size from a solution and reverses the order of 

locations.  This operator was found to be destructive in nature and is used with low 

probability in Russell’s implementation.  The third mutation operator is displacement.  

Similar to crossover, a sub route is removed from a solution and moved to a new location.  

Unlike the crossover operator however, no effort is made to place the sub route in an 

insertion point that minimizes distance.  Russell describes this operator as “relatively 

destructive” and uses it with low probability.  The final mutation operator in GVR is 
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insertion.  This operator is a special case of displacement in which the size of the sub 

route is one.  This property makes the operator less destructive since only one route is 

affected.  To validate his work, Russell tested his algorithms against the Lin-Kernnigan 

Traveling Salesman Problem Library benchmarks (TSPLIB) [2].   

For handling feasibility concerns, Russell developed a set of experiments to 

compare among repair functions and static and dynamic penalty functions.  Empirically 

he showed that for his problem domain, that the use of a repair operator led to faster 

convergence and thus shorter runtimes than using either static or dynamic penalty 

functions.  He cites as a possible explanation for this, the difficulty in integrating 

sensitive problem-specific information into the creation of a penalty function.  A repair 

function on the other hand is at least straightforward if not generally superior. 

 

 2.2.3 Linking the Path Planning Problem to the UAV Routing Problem.  Despite 

the many definitions of the path planning problem in the literature, nearly all of them 

structure the problem as the minimization of cost in traveling between a start and goal 

node.  As a result, the output from any good path planning algorithm can provide the set 

of link weights for any algorithm that solves the routing problem.  In Russell’s GVR 

implementation, the link costs are calculated using a combination of the path length and 

the risk associated with the target node.  In a classic TSP problem where the nodes 

represent distant cities, this is an adequate approach.  Any cost associated with a vehicle 

having to turn around within a city is abstracted away due to the low relative cost of such 

a maneuver compared to the distance between the nodes.  In a UAV mission however, 

this may not be the case.  If the locations or targets in a UAV routing problem are 
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confined to a single city, the distances between the targets may be as close as a few 

aircraft turn radii.  In this case, turns which can be made abruptly in a large scale problem 

now become factors in the minimization of costs for a tour.  A point-to-point link cost is 

no longer sufficient to represent the true cost of the link.  In order to account for the cost 

associated with turning, the cost of a link must consider the heading of the aircraft when 

approaching and leaving the various target nodes.  By reformulating the path planning 

problem in terms of target triplets, with the goal of minimizing the cost of traveling from 

a starting point p0 to a destination point pf through an intermediate point pm, a full account 

of the added distance incurred by making feasible turns can be made.  A path planner 

with this capability then takes as its input three points representing targets, terrain and 

threat data corresponding to the planning area and return a path containing a complete set 

of points representing a path that travels through the three points while negotiating threats 

and minimizing cost. 

 

2.3 AFIT UAV Swarm Simulator       

 The AFIT UAV Swarm Simulator is a Parallel Discrete Event Simulation 

(PDES).  Based originally on Reynolds’ Distributed Behavior Model for flocking, the 

simulator was developed by Kadrovach [23].  Corner [14] ported the model from a 

single-processor Windows platform to a parallel Linux-based Beowulf cluster.  The 

simulator appeared twice at the Winter Simulation Conference [13] and [48]. This section 

looks at the historical development of the model and a description of the architecture 

under which it was developed. 
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- Reynolds’ Distributed Behavior Model.  In his model, Reynolds defines three 

behaviors or rule sets to which individuals must adhere to maintain a flock or swarm [45].  

The first of these is collision avoidance or separation.  This behavior has the highest 

priority among the three.  It involves steering to avoid crowding or collision between 

flock mates.  Velocity Matching or Alignment is the second most important behavior.  

Adherence to this rule requires each flock member aligning itself toward the average 

velocity of the flock.  Finally, flock centering or cohesion is lowest priority behavior and 

involved steering toward the average position of local flock mates.  Figure 2.6 [45] 

illustrates these principles. 

    

Figure 2.6 Reynolds’ Distributed Behavior Model [45]. 

 

Together, these three behaviors provide a basic rule set for modeling a swarm or flock.  

Since Reynolds’ publication in 1987, many swarming models have been developed which 

incorporate these principles.  Among these models are Particle Swarm Simulation, 
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Physical Robots, Synchronized Multi-Point Attack, Self Organized Behavior Swarms, the 

Kadrovach Model, and the Milam Model. 

 

 - Particle Swarm Simulation (PSS).  Based on Particle Simulation Codes (PSC), 

particle swarm simulation models use plasma ion interactions as their inspiration.  PSCs 

have standard force equations and equations of motion.  Additional model features of the 

PSS include center-of-mass, swarming force, friction, dissipation, aerodynamics, and 

gravitation [63].  These various forces and rules of the PSS are summed into single 

vectors of motion.  

 

 - Physical Robots.  Described in [32], an agent-based model is developed with the 

following behaviors: avoidance, following, aggregation, dispersion, homing, and 

wandering.  Agents also have goal knowledge which contributes to the development of 

successful behavior.      

 

 - Synchronized Multi-point Attack.  Lua developed a model in which a swarm 

converges to a single target and attacks [31].  In this model, an orbit behavior is defined 

under which a vehicle begins to circle around a target and wait for other swarm members 

to join in.  Once the orbit density reaches a critical level, the model moves the swarm into 

attack mode allowing the members to attack in mass from different directions.  

 

 - Self Organization of UAV Swarms.  Price developed an extensive swarm 

behavior model in which behavior archetypes are selected using a perceptron and evolved 
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using genetic programming [42]. The swarms’ members follow numerous rules which 

allow them to seek out unknown targets in an unknown region, gather to a critical mass, 

and engage the target. 

 

 - Kadrovach Model.  The AFIT swarm simulator is based on the Kadrovach 

model which was developed upon the more general Reynolds model.  The model focuses 

on communication and formation stability.  Communication networks require scalability.  

To this end, Kadrovach limited the communication among nodes to nearest neighbors.  A 

UAV’s nearer neighbors shadow or block other neighbors within 30 degrees.  With this 

restriction, swarms tended to form hexagonal configurations.  In addition to formation 

stability, this rule also achieved the desired scalability.  As swarm size increases, the 

number of communication pathways required per node remains constant.  In both 

Kadrovach’s initial single-platform implementation and Corner’s subsequent parallel 

implementation, the limitation on node-to-node visibility was only simulated.  In 

Kadrovach’s model UAVs had global knowledge of every other UAV’s position.  In 

Corner’s parallel PDES implementation, UAVs subscribed to all other UAVs.  While 

their motion vectors were only affected by nearest neighbors, scalability was poor as 

network message traffic increased significantly with increasing numbers of UAVs.      

 The physical behavior of the Kadrovach model was guided by combining 

Reynolds’ three rules into just two: attraction and alignment.  The attraction rule causes 

UAVs to adjust their motion vectors to steer toward one another whenever distances 

between UAVs exceed a given threshold.  Conversely, the same rule forces nodes to steer 
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away from one another when their distances decrease below a given threshold.  The 

alignment rule is implemented just as described in Reynolds.     

 

 - Milam Model.  This model focuses on control aspects of UAV swarms [36].  A 

genetic programming algorithm is used to evolve UAV velocities throughout the life 

cycle of the model.  This model successfully moves a swarm of UAVs through a 3-

dimensional space among a set of targets while preserving the integrity of the swarm.     

 

 - Reynolds Behavioral Hierarchy.  In his later work [46], Reynolds defined a 

more complex behavior hierarchy for autonomous characters.  Complex goal-oriented 

behaviors at the top of the hierarchy are produced by aggregations of lower level 

behaviors.  Figure 2.7 illustrates this hierarchy. 

                    

Figure 2.7 Reynolds’ Behavior Hierarchy [46]. 

 

These behaviors are best understood through example.  Imagine a redundant mobile ad 

hoc sensor network, with the ability to self-repair.  A sensor detects a nearby sensor 

going offline.  This represents an undesirable change in the communications 

environment.  The node repairs the hole in the network by “deciding” to reposition itself 

to fill in the gap.  This is an example of an action selection behavior.  To achieve this new 
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goal of closing the hole, the mobile sensor must plan its path of motion to travel to the 

desired location while avoiding obstacles.  This is a steering behavior.  To steer along this 

path to the hole, a set of low-level locomotion behaviors such as thrust and turning are 

required.  Thus complex behaviors are defined and achieved through the careful 

application of low-level behaviors.   

 Within this framework, Reynolds developed a complex model for 3-D 

autonomous animation.  This model was implemented with video games in mind and is 

used in Sony’s Playstation ™ game system.   The physical model used to represent a 

vehicle was based on a point mass model.  Reynolds acknowledged that this model 

overlooks turn radii and moment of inertia.  The vehicle model consists of a mass, 

position, velocity, maximum force, maximum speed, and an orientation.  The orientation 

is given as a set of N-basis vectors and is therefore suitable for both ground and air 

vehicles.   

With the point mass vehicle model in place, the behaviors associated with 

locomotion hierarchy act directly on its vectors.  The control signals which generate the 

locomotive behaviors are communicated through the steering behavior.  This middle 

hierarchy was fully developed to improve on the three-behavior model of his earlier 

work.  Behaviors developed under this hierarchy include: seek, flee, arrival, pursuit, 

offset pursuit, path following, obstacle avoidance, and containment.  Seek is the pursuit 

of a static target.  It acts to steer a character toward a particular position.  Flee is the 

inverse of seek.  It steers the character so that its velocity is radially aligned away from a 

fixed location.  Figure 2.8 illustrates the behaviors of seek and flee. 
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Figure 2.8 Reynolds’ Seek and Flee Steering Behaviors [46]. 

 

  Pursuit is like seek but the added factor that the target is moving.  This behavior 

requires not only knowledge of the target’s velocity vector, but also the capability to 

predict the targets future velocity.  Evasion is the opposite of pursuit i.e. the character is 

steered away from the predicted future location of the moving target.  Figure 2.9 

illustrates the pursuit and evasion behaviors. 

 

Figure 2.9 Reynolds’ Pursuit and Evasion Steering Behaviors [46]. 
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Offset pursuit steers a path to come within and maintain a fixed distance from a 

moving target.  Arrival is the same as seek when there is a significant distance between 

the vehicle and the target.  However, arrival slows the vehicle down as it approaches.  

This behavior ends with the vehicle at a zero forward velocity and a position coincident 

with the target.  Figure 2.10 illustrates the arrival behavior. 

                      

Figure 2.10 Reynolds’ Arrival Steering Behavior [46]. 

 Reynolds’ extensive behavior hierarchy addresses many of the requirements a 

swarm must meet in order to be able to follow feasible paths to targets.  The behavior set 

is rich and requires a complex set of individual members to execute.  In this research, 

some of these capabilities are created offline.  For example, feasible paths are generated 

by the path planning module and assigned to swarm members thus relieving them of 

burdensome computational requirements.  At the strategic level of planning, the 

assignment of sub-swarms to target sets is also performed offline allowing decision 

makers, rather than swarm members themselves, to better guide the behaviors of the 

swarm to meet the objectives. 

  



 2-27 

2.4 Summary.  This chapter discusses various formulations of the path planning problem 

and some algorithms used to solve them.  The vehicle routing problem is then defined 

with a look at Russell’s genetic algorithm used to solve it.  Finally, swarm behavior 

models are explored with emphasis on the existing AFIT Swarm model.  These three 

research areas motivate the design of the enhanced AFIT UAV Swarm Mission Planning 

and Simulation System.  Chapter 3 provides the high level design of this system as well 

as designs of its three components: the parallel path planner, the modifications required 

of the vehicle router, and the enhanced swarm behavior model.   
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3. High Level Design 

 

This chapter develops the higher-level design aspects of the AFIT UAV Mission 

Planning and Parallel Simulation System and the associated design objectives of this 

research.  The system consists of three principal components: a parallel path planner, a 

vehicle router, and a simulation and visualization engine.  The problem and algorithm 

domains of each of the problem’s components are presented as well as the strategy 

developed to integrate the algorithm domains into a comprehensive system. 

 

3.1 Design Objectives   

 The development of a comprehensive UAV mission planning system consists 

minimally of an efficient assignment of resources to targets, an effective means to create 

vehicle trajectories that minimizes risk to the resources and mission cost, and a behavior 

model that produces swarm behavior without degrading the other capabilities.  This 

section compartmentalizes the above requirements into three design modules each with a 

defined problem domain and suitable algorithm domain. The routing module is enhanced 

from previous research; a formal description of its problem domain/algorithm domain 

mapping is given in [49].  

 

3.1.1 Parallel Path Planner. The Parallel Path Planner is developed with two key 

objectives: create an efficient and effective path planner using a genetic algorithm, and 

create a flexible parallelization of the algorithm to allow for rapid generation of multiple 

paths for use in solving higher level optimization problems such as the TSP and CVRP 

[62]. 
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 - Problem Domain of the Path Planner.  The specific path planning problem for 

air vehicles consists of the following:  given a discrete operational space of size n x m 

units superimposed over a terrain grid ( ) )1(1 −×−∈ mnG , a Location set L where 

Llmnli ∈∀×∈  find a low cost path ∗P from all Lli ∈  to all other Ll j ∈  subject to the 

following:  ( ) 45,,... 1 ≤∆∈∀ +iino ppPpp θ o
 where θ is the inbound heading at pi. The 

restriction o
45≤∆θ , ensures that the path remains flyable by an aircraft.  Based on the 

grid spacing of 750 meters, the vehicle can safely navigate a 45-degree turn.  The 

threshold is based on the restriction used by the Terrain Following Optimizer (TFO) of 

the Air Force Research Laboratory and is representative of the turn rate of the AC-130 

gunship [58].  This turn restriction can easily be modified to suit other vehicle types that 

may have faster or slower turn rates. The term “cost” is a composite of individual 

objectives or measures of merit of a mission.  In this research, five such measures of 

merit are defined.  These objectives are the same as those used in the TFO of the Air 

Force Research Laboratory. 

1.  Path – The sum of the Euclidian distances of the route segments to include the turns 

that connect them. 

2.  Climb – The amount of climbing a vehicle must do in the course of flying a route in 

order to avoid terrain. 

3.  Terrain – The cost of exposure to unknown threats or the vulnerability associated with 

being “out in the open.” 

4.  Detect – The cost associated with being exposed to enemy detection – a function of 

both distance and time. 
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5.  Kill – The cost associated with being within the lethal range of an enemy air defense 

weapon – a function of range, time and the lethality of the weapon. 

 While the problem domain of the generalized path planner has no restriction on 

the size of the target set L, the target set is limited to three targets or locations per 

instance to maintain compatibility with the problem domain of the TSP/CVRP which is 

solved by the router. 

  

- Multi-Objective Problem Formulation.  When a problem has five different cost 

functions, it can be solved as an aggregate function that attempts to simultaneously 

minimize all parameters, or it can be solved as a multi-objective problem where the 

output consists of a set of non-dominated solutions along the Pareto front.  An end user 

can select one of these solutions provided they are capable of deciding the appropriate 

level of trade-off between two competing objectives.  An output consisting of a five-

dimensional Pareto front however, would likely overwhelm the decision maker by 

providing him or her with more questions than answers.  Fortunately, the measures of 

merit can be grouped logically into two categories: those that describe the cost of the path 

in terms of time and fuel consumption, (path and climb), and those that measure the risk 

of a given path (terrain, detect, and kill).  Equations 3.1 and 3.2 define the grouping of 

the five problem objectives into two competing categories.  

                              
TERRAINKILLDETECTRISK

CLIMBPATHCOST

Φ+Φ+Φ=Φ

Φ+Φ=Φ

ωλδ

βα
 

 

(3.1) 

(3.2) 
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Where {α,β, δ, λ, ω} are weighting factors associated with the relative importance 

of each parameter.  In the TFO, these values are mission specific and are input by 

the user.  The individual cost functions are: 

 

ΦPATH : The Euclidian distance between each point is summed over the length of the 

route. 

 

ΦPATH  =   ( ) ( )∑ = ++ −+−
f

i iiii yyxx
0

2

1

2

1     

  

ΦCLIMB:  The sum of positive changes in elevation from each point to the next point. 

 

    ( )∑
=

+∆=Φ
f

i

iiCLIMB ppz
0

1, δ     

where δ is 1 if zpi+1 > zpi and δ is 0 otherwise. 

 

ΦDETECT:  The total linear distance through which an aircraft flies into the effective 

detection ring of an air defense radar. In this model, an inter-visibility database is 

calculated using the terrain and threat data sets.  Inter-visibility accounts for areas in 

which terrain obscures the radar’s line of sight to the aircraft.  So while a typical threat 

ring over flat terrain might be represented visually as a circle, the inter-visibility database 

over a rough area would show the threat ring as a circle with shaded portions representing 

safe areas where the radar is ineffective.  We define the detection penalty as a summation 

of the penalties associated with each point in the route such that in traveling from one 

point to the next, the length of the intersection between that segment and an effective 

threat area is a scalar multiple of the penalty.  Figure 3.1 graphically depicts an instance 

of a route intersecting a detection area. 

  (3.3) 

  (3.4) 
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Figure 3.1 Example of Route Intersecting a Detection zone. 

 

The formulation of the threat penalty is described as: given a battle grid (X,Y), a route 

{p0, p1, p2, pf}, where points between pi and pi+1 are in (X,Y), and a threat detection zone 

( )YXTi ,∈ , we define the cost of traveling through a threat as the sum of the number of 

(X,Y) in Ti intersecting the route P. 
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ΦKILL:  The same formulation required for the detection cost function is applied to the kill 

cost function.  The distinction between the two is that the effective kill radius of an air 

defense system is generally smaller than the detect radius.  Information regarding the type 

and range of a given threat is either known or estimated a priori. 

  (3.5) 
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ΦTERRAIN:  While many threats are known a priori, others are not.  Therefore, the vehicle 

should remain out of sight as much as possible.  The terrain metric measures the number 

of points in the grid from which a vehicle at a particular point can be seen.  The overall 

terrain score is determined by summing the surrounding points from which the vehicle 

can be seen as it flies though each grid point along its path.   

 

- Algorithm Domain of the Path Planner.  Given the historical development of the 

path planning problem shown in Section 2.1.2, a multi-objective evolutionary approach 

was chosen as the framework to develop a path planner compatible with the AFIT CVRP 

router.  The multi-objective approach allows for commanders to make informed decisions 

on mission trade-offs with respect to cost and risk.  Although a multi-objective problem 

has many solutions, a router can only use a single solution for a given link to solve the 

CVRP.  Therefore, in this design, only a single solution from the Pareto front of the path 

planner is passed to the router.  The planner is still viable as a multi-objective decision 

making tool however.  Smaller missions with limited target sets and a low number of 

vehicles can be optimized using individual instances of the planner for each vehicle.  The 

output of the planner then provides a decision maker the cost/risk tradeoffs of each 

vehicle.  

The multi-objective genetic algorithm of the path planner consists of the 

following elements: a population of candidate solutions, a defined chromosome structure 

of each candidate, a set of evolutionary operators which operate on the members of the 

population, a pair of evaluation functions to measure fitness of the solutions, an archived 

set of non-dominated solutions, and a defined period of evolution.  Based on the work of 
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Xiao [67] a population size of 50 individuals was used along with an evolutionary period 

of 50 generations.  Figure 3.5 below describes the high level flow of the evolutionary 

algorithm used in the path planner.  The vector function fk( x
r

) is the set of evaluation 

functions.  In this algorithm, k=2 where f1( x
r

) is the cumulative cost function and  f2( x
r

) is 

the cumulative risk function.  The symbol g, is the period of evolution (50 generations). 

        _________________________________________________________________ 

        Algorithm  MOEA Planner algorithm  
            _________________________________________________________________________________________________ 

 1: procedure MOEA_Planner(N , g, fk( x
r

)) 

 2:     Initialize Population P of size N  

    3:     Evaluate, Rank (by dominance), sort Population   

 4:     Create archive population Pa from non-dominated members of Pi  

 5:     for i in 1 to g do 

 6:          Select for recombination  

 7:          for j in 2 to N   do  

 8:               Statistically select mutation operator Γk 

 9:        Mutate member j 

 10:              end for 

 11:         evaluate Population 

 12:         determine dominance rank within current population Pg 

 13:          remove dominated members from Pa 

 15:          add globally non-dominated members from Pg to Pa 

 16:    end for 

 17: end procedure    

            _________________________________________________________________________________________________    
Figure 3.2 High Level View of Path Planning Algorithm. 

 

Note that the algorithm runs for a fixed number of generations.  No heuristic was 

developed to terminate the evolutionary cycle once convergence of the solution was 

achieved.  Further experimentation is needed to study the time saving benefits associated 

with early termination of the algorithm.  The chromosome structure is similar to that used 

in [67].  A chromosome or candidate solution consists of an ordered set of  points (xi,yi) 

which define a path from the starting point (x0,y0) to a destination point (xf,yf) through a 
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midpoint (xm,ym).   Additional information contained in each point includes elevation, the 

MSL altitude of the point; set clearance, the AGL altitude of the point; and heading, the 

direction of travel from the present point to the next point.  Set clearance and altitude are 

used to calculate the amount of climb or descent needed to reach the next point as well as 

for terrain masking calculations.  Heading is stored to ensure feasibility of the turns.  The 

planner calculates the change of heading between points to ensure the turn rate is within 

the aircraft’s limits.  Figure 3.3 illustrates the chromosome structure of a candidate 

solution. 

 

Figure 3.3 Chromosome Structure of the Path Planner. 

 During initialization, the population of candidates is created with each member 

containing the start, middle, and end points.  An initial check is performed to ensure that 

the turn around the mid point is less than 45 degrees.  If it is not, a modified convex hull 

algorithm (See Appendix B) is used to add additional points to the route such that no turn 

greater than 45 degrees remains.  Once the route is repaired, a number of intermediate 

points are randomly added to the route.  The number of points added is based on the 

distance between the three original points.  During this process, the algorithm ensures 

that the change of heading between each point (excluding the starting point) is less than 

45 degrees.  Figure 3.4 defines the algorithm for population initialization. 
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 Algorithm: Population Initialization of the Path Planner 

          _________________________________________________________________________________________________ 
          1: procedure INITIALIZE(Rinit, p0, pm, pf, R[POPSIZE] ) 

          2:        Rinit = {p0, pm, pf}  

          3:         if | pm heading - p0 heading| > 45 then 

          4:                 REPAIR(R[i]) 

          5:         end if 

          6:         points to add before mid = distance (p0, pm) / 10 

          7:         points to add after mid = distance (pm, pf) / 10 

          8:         for i in 1 to POP SIZE do 

          8:                 for i in 1 to points to add before mid do 

          9:                       R[i].insert random point  

          10:                        end for  

          11:                       for i in 1 to points to add after mid do 

          12:           R[i].insert random point        

          13:                end for  

          14:          end for 

          15: end procedure 

          _________________________________________________________________________________________________ 
Figure 3.4 Population Initialization of the Path Planner.  

  

Once the population has been initialized, it is evaluated using the cost functions 

described in section 3.3.2. In a single objective EA, a program need only maintain the 

current population.  In a MOEA, the complete set of non-dominated points is maintained.  

A non-dominated point P, is one that has a fitness value for one objective function, F1, 

such that no other solutions exist with a lower score (minimization problem) for objective 

function F1 unless that solution has a higher score for another objective function.  The set 

of non-dominated solutions is known as the Pareto front.  To store the set of non-

dominated solutions for this MOEA, a Pareto front archive is maintained. 

 To find the initial Pareto front points, each member of the population is compared 

to every other member based on the member’s F1 score, Φcost and by its F2 score, Φrisk. 

The population is first sorted by Φcost.  A candidate Ri is added to the Pareto front if it 

meets the following criteria.  
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 All non-dominated members of the population are added to the Pareto Front 

Archive.  The population is then sorted by rank.  The rank of an individual Ri, reflects the 

number of individuals in the population that dominate Ri.  All non-dominated members of 

the population are assigned a rank of zero.  All members dominated by a single solution 

are given a rank of one.  Members dominated by two individuals are given a rank of two 

etc.  Rank is the primary selection criterion used in the path planner.  Dominance count is 

an alternative selection method. Dominance count is defined as the number of solutions 

in the population that a particular solution dominates.  A drawback of using dominance is 

that points along the ends of the front tend to evolve out of the populations while 

crowding occurs near the middle of the front.  Rank is therefore preferable to raw 

dominance count because greater diversity is maintained in the population.[24]. 

 Once the population has been evaluated and ranked, selection is performed.  Like 

other MOEAs, [9] [24] the planner uses an elitist selection operator.  Elitist selection 

chooses the fittest members of the population. The use of elitism is common in MOEAs 

because the elitism preserves non-dominated individuals.  The top half of the rank-sorted 

population is selected for recombination.  Pairing of individuals is done randomly.  Once 

paired, two offspring are created.  These offspring occupy the places of the members not 

selected.  Crossover is performed at the midpoint of the path.  This ensures that the 

offspring remain feasible.  During the crossover operation, the midpoints between two 

parents are exchanged.  Since the underlying data structure (described in Chapter 4) is a 

linked list, the points beyond the midpoint are copied as well.  The resulting offspring 

contain the points of one parent from the start of the path to the mid point, and the points 
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of the second parent from the mid point to the end of the path. An illustration of the 

crossover operator is given in figure 3.5. 

             

Figure 3.5 Crossover Operator. 

  

Once the crossover operator has been applied, the population then undergoes 

mutation.  The path planner uses three distinct mutation operators which are applied with 

equal probability. 

 The first mutation operator, M1 attempts to add a point between two existing 

points in the path.  If the addition of the point results in an infeasible solution, then the 

repair operator is invoked to create additional navigation points.  The sharper the turn 

created by the mutation, the more navigation points are needed to smooth the route.  The 

repair algorithm generates a number of points proportionate to the change in heading 

caused by the infeasible point.  For turns of just over 45 degrees, only two points are 

needed.  For larger turns, as many as seven additional points need to be added.  
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Therefore, when the mutation operation adds a point between two relatively nearby 

points, resulting in an unfeasible route, the path cannot be repaired and the operation is 

cancelled.  Figure 3.6 illustrates the Mutate Add operation on an arbitrary 4-point path 

segment.   

                  

Figure 3.6 Mutate Add Operation with Repair. 

 

The second mutation operator, M2 attempts to delete a point between two points 

in the path.  Again, if the deletion results in an infeasible path, the repair operator is 

called to add points which result in a smooth trajectory.  Deletion operations naturally 

increase the distance between points.  Therefore, the repair operator is usually able to add 

the points necessary to achieve feasibility.  Nonetheless, feasibility of the repair operation 

is still validated and if the path cannot be repaired, the operation is undone.  It is 

important that balance is achieved between delete and addition operations.  When too few 

deletions occur, the resulting path has too many points and is more difficult to evolve.  
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When too few additions occur, the path tends to have very few points and the ability of 

the algorithm to minimize cost and risk is diminished.  Because the deletion operation 

results in greater success, the addition operation is used with a slightly greater 

probability.  An example of the delete mutation operation is given in Figure 3.7. 

   

Figure 3.7 Mutate Delete Operation with Repair. 

 

 The last of the mutation operators, M3, selects an arbitrary point (not one of the 

original three) and attempts to alter its location by a bounded, random displacement.  This 

operator does not change the number of points in the path by itself but additional points 

can be added when the alteration results in an infeasible path.  When the bounds of the 

displacement are loose, the resulting path is more likely than not to be infeasible.  

Additionally, loosely-bounded displacement results in a greater number of points being 

added due to repair.  On the other hand, if the bounds of the displacement are too tight 

then the operator becomes nothing more than a tool for local search.  The path planning 
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experiments given in Chapter 5 attempt to illustrate the tradeoffs associated with 

loosening or tightening the bounds of the alteration.  Figure 3.8 illustrates the alteration 

mutation operator. 

  

Figure 3.8 Mutate Alter Operation with Repair. 

 

              3.1.2 Parallel Swarm Simulator.  The swarm simulator routes individual 

members to required targets by way of required waypoints.  These way points are 

generated by the path planner and assigned to sub swarms by the vehicle router.  They are 

designed to minimize climbing, distance, and risk. 

 

 - Problem Domain.  The problem of directing swarm behavior can be expressed as 

the cumulative problem of directing individual member behavior.  The following 

relations mathematically define the problem domain of the swarm model: 



3-15 

 

Given a swarm member vi and the following: 

1. A terrain region (X,Y) with an elevation Z = f (X,Y)  

2. A neighborhood vehicle set V 

3. A next waypoint wnext < i, j, k >  

4.  A current position s(t) = < i, j, k >   

5.         A set clearance C 

Create a vector v(t+ ∆t) to guide vi toward wnex subject to conditions: 

1. z(t+ ∆t) > C +  f(x t+ ∆t , y t+ ∆t)  

2. |s(t+ ∆t) - wnext | <  | s(t) - wnext |      

3.         ( ) ( )( ) ( ) ( )( )ttvbttstvbtsvvVv iii ∆+−∆+>−≠∈∀ ,,   

Where condition 1 maintains the required set clearance, condition 2 moves the vehicle 

toward the next steering point, and condition 3 adjusts the separation between the 

member vi and all neighbors in V toward the proper separation distance b. 

 The AFIT UAV Swarm Mission Planning System combines the simple behavior 

rules of Kadrovach [13] [23] with the ability to achieve higher-level goals such as those 

described in [46].  While high-level goals such as reaching targets and path planning are 

left to the individual members in Reynolds, the AFIT system uses the router and planner 

to achieve them.  Specific steering behaviors are defined in the swarm simulator tool.  

This approach simplifies the simulation model which increases its scalability.  This 

section gives the behavioral description of the simulation model and its high-level design. 

 



3-16 

 3.5.1 Simulation Overview.  The swarm simulator is given a set of preplanned 

swarm routes that have been optimized by the planner and the router along with a digital 

terrain data set for the swarm’s area of operation.   The model calculates a set of 

trajectories for every swarm member.  These trajectories embody the planned paths to 

targets as well as the application of the behavior rules for the members.  The model 

output is then visualized using the Sky View visualization package. 

 

 3.5.2 Behavior Model.  The behavior model consists of a set of rules to achieve 

path-following swarm behavior, a set of modes under which the rules are applied with 

various weighting factors, and a neighborhood of influence which defines which 

members affect the behavior of a given member.  Each rule results in a unit vector 

addition operation applied to an individual.  The sum of these vectors produces the 

member’s trajectory. 

 

 -Neighborhood.  Just as with swarms of insects or flocks of birds, swarms of 

UAVs have limitations on information that can be obtained from other members of the 

swarm.  These restrictions are generally based on the proximity of a member to other 

members of the swarm.  In the model presented here, we define the notion of 

neighborhood which is used to define the communication model as well as shape of the 

swarm formation.   

 The swarm shape is a 3-D stack of diamond tessellations.  Each plane or level in 

the stack is offset one half-step from the level directly above or below it.  Figure 3.9 

gives an example of a swarm with a width of five vehicles and depicts the head-on view.  
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Co-planar members are same-colored.  The same figure also represents the top down 

view of the swarm.  From that perspective, the red members represent the middle vertical 

level while the green members represent the top and bottom levels.  The top level 

obscures the view of the bottom level.    

          

Figure 3.9 Head-On View of Swarm Formation. 

 

 The main parameter of the swarm formation is the separation b, representing the 

lateral distance between co-planar members and the distance of the co-planar neighbor 

directly in front and behind the member.  Co-planar members 45 degrees front-left and 

front-right are at a distance of 2b .  Figure 3.10 illustrates the separation parameter. 

                                  

Figure 3.10 Swarm Separation. 



3-18 

 Members are not influenced by those behind them for two reasons.  First, the lead 

members are first to climb in response to terrain and also reach their target and begin 

their turns before trailing members.  Application of the cohesion rule would cause lead 

members to throttle back when climbing or turning to allow trailing members to catch up.  

Instead, catching up is achieved by trailing members applying the cohesion rule with 

respect to their distance from the leading vehicles.  A second reason for this 

simplification is a reduction of the communication overhead.  Restricting the neighbor 

hood of a member to those members level with or in front of the member, reduces the 

size of the neighborhood considerably.  Table 3.1 defines the neighborhood of influence 

surrounding a given swarm member. 

 

         

Table 3.1 Neighborhood Definition. 
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- Rules.  The behavior model consists of a set of three rules R = {r1, r2, r3}. 

The application of these rule result from the interaction of individual swarm members 

with one another and with the terrain.  As defined by Kadrovach and implemented by 

Corner in [9], each swarm member can only detect and be influenced by its neighbors.     

  r1 Cohesion.  This rule is based on Reynolds’ original model [45].  It 

creates a vector that causes a vehicle to move toward its neighbor whenever the distance 

to that neighbor exceeds the threshold distance value.  Recall that vehicles in the lead 

with respect to the next target are not influenced by the cohesion rule except by their co-

planar members to the left and right.  Figure 3.11 illustrates the cohesion rule and its net 

effect on the member. 

                                 

Figure 3.11 Cohesion Rule Applied to Swarm Member. 

 

   r2 Separation.  Also from Reynolds, this rule adds a vector to the member 

moving it away from a neighbor when the distance to that neighbor decreases to below 



3-20 

the threshold value.  Leading vehicles have no members in front of them and are not 

directly influenced by those behind them.  Therefore the separation rule applies only to 

their left and right co-planar neighbors and their neighbors two planes directly above and 

below them.  Figure 3.12 illustrates the separation rule and its net effect on the member. 

                                   

Figure 3.12 Separation Rule Applied to Swarm Member. 

 

  r3 Target Seeking.  This rule replaces the more general alignment rule 

used in [9], [13], [23], and [45].  Figure 3.13 shows the application of the target seeking 

rule. 

                

Figure 3.13 The Target Seeking Rule. 
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 - Modes.  The simulation progresses under two primary modes: warp and 

synchronization.  During warp mode, communication among swarm members is 

suspended.  Individual members continue on their path at their current heading.  When 

small changes in individual trajectories are needed to avoid terrain, the other members are 

not notified.  An individual member simply adjusts its trajectory as needed.  During 

synchronization mode, members determine their neighborhoods and adjust their 

trajectories according to rules 1 and 2.  The simulation enters synchronization mode 

under two conditions: 1) whenever a member alters its angular velocity by an amount 

greater than π/8 degrees, and 2) at scheduled fixed time intervals.  The later condition is 

required to prevent drift in the swarm which would occur if minor changes in trajectory 

are extrapolated over long periods of time.  During warp mode, the members apply only 

rule 3 which accounts for climbing and descending.  Under synchronization mode, the 

swarm applies rules 1 and 2 with a weight of 20% and it applies rule 3 with a weight of 

30%.  This weighting was established empirically as optimal for maintaining swarm 

characteristics while achieving the target seeking behavior. 

 

 - Communication Model.  The simulation is built on the SPEEDES framework as 

discussed in chapter 2.  Under the original simulation, all UAVs in the scenario 

subscribed to all other UAVs.  To simulate communication, influence was restricted to 

neighbors but messages were sent and received by all.  In the current implementation, 

message traffic is restricted to neighbors and to the central simulation engine.  This 

allows for true scalability of the swarm model.  Details on the implementation of the 

communications neighborhood are given in Chapter 4.  
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 - Sub-Swarms. The assignment of targets to sub-swarms is planned prior to 

execution of the simulation.  Each vehicle therefore, knows which targets it is responsible 

for reaching.  Since the entire swarm embarks on the mission from a single location, a 

swarm split is performed as sub-swarms go out in search of their individual targets.  In 

order to minimize maneuvering and communication required for a split operation, the 

swarm uses a train or sausage link model in its original formation.  Upon reaching a 

designated split point, the leading section of the swarm becomes a sub-swarm and turns 

towards its next target.  The remainder of the swarm turns toward its next target.  The 

split is done along the length of the swarm like a section of railroad cars being removed 

from the track.  This method has the advantages of maintaining the shape of the sub-

swarm and reducing the swarm’s spatial footprint over time.  Figure 3.14 illustrates the 

split operation on a swarm. 

                 

Figure 3.14 Swarm Split Operation. 

 Once a swarm has split, there is no join operation defined.  At the end of the mission, all 

swarms return to their embarkation point.  Due to varying target assignments, the sub-

swarms return home separately. 
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3.2 System Level Design 

 The previous section addressed the design objectives of the UAV Swarm Mission 

Planning System and the problem domain/algorithm domain definitions of the three 

problem components.  This section addresses system level design goals and integration.  

First, the system’s data flow is defined illustrating the interaction of the design modules.  

This is followed by a discussion of the required interface between the modules and the 

integration of the problem domains.  Parallelization of the path planner is then presented 

followed by the modification requirements for the router. 

 The system’s data flow begins with creation of a target set, terrain field, threat lay-down, 

set clearance, and number of available swarm vehicles.  The terrain masking algorithm is 

given the terrain elevation data, location and range of threats, and the set clearance or 

above ground altitude at which the vehicles fly.  The threat lay-down is superimposed over 

the terrain grid, and grid areas considered to be within the effective detection and kill 

ranges of the threat are identified.  The algorithm then calculates the line of sight visibility 

of each grid space within the effective range.  An individual grid space is eliminated from 

the effective range of the threat when a terrain barrier lies between the grid space and the 

threat such that a line drawn from the threat radar to the grid point intersects the terrain 

boundary thus obscuring the grid space from sight of the radar.  The set clearance of the 

UAV is added to the elevation of the grid space to account for the vehicles height above 

the ground.  The updated threat range data is then stored for use by the path planner. 

 Once the terrain has been preprocessed, the vehicle router optimizes the assignment of 

vehicles to targets.  To accomplish this, the router needs to know the complete cost 

associated with a particular route.  The router produces a set of candidate solutions and 
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invokes the parallel path planner to provide complete, feasible paths for each route.  The 

router’s genetic algorithm finds the lowest cost vehicle assignment for the mission, and 

retrieves the complete set of waypoints for each vehicle or sub-swarm.  This complete set 

of paths is then fed to the parallel swarm simulator which then simulates the mission and 

produces a visualization of the swarm flying its mission.  Figure 3.15 illustrates the 

dataflow design of the integrated system.  

                        

Figure 3.15 High Level Design of AFIT UAV Mission Planning System. 

  The path planner produces a solution to the problem of minimizing the risk and 

cost associated with moving a vehicle from one location to another by way of an 

intermediate point.  The input to the algorithm therefore, is a triple {Pi, Pm, Pf}.  The 

output contains the set of waypoints between Pi and Pm and between Pm and Pf.  This 

output forms a single segment of a solution to the larger vehicle routing problem which 

contains multiple targets and multiple vehicles.   
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The router creates permutations of locations representing an ordered set of 

assignments to a set of vehicles.  These permutations require sets of the triples described 

above.  The generation of these triplets is time consuming and the number of possible 

triplets grows at a rate of O(n
3
) with the number of locations n.  This growth rate is 

mitigated by three methods.  First, the path planner is parallelized so that several paths 

can be generated at once.  Next, the router uses a simple set of heuristics to request paths 

before they are needed.  Finally, links which have already been calculated are cached for 

later reuse. 

 

3.2.2 Integrating Problem Domains of the CVRP and the Path Planning Problem. 

In the CVRP, nodes in the graph represent targets or locations that must be visited and 

“serviced” by a vehicle.  The set of locations or targets in the CVRP are the inputs to the 

path planner which creates the actual flight paths for the vehicle.  

Each candidate solution in the genetic routing algorithm consists of a set of target 

links for each vehicle.  Using Genetic Vehicle Representation, each solution in a 

population has the form {n1,…nn}.  This form efficiently encodes an entire set of nodes 

(targets) to the available vehicle.  Decoding the route requires knowledge of each 

vehicle’s range and each node’s required payload.  In this research, all vehicles are 

considered homogeneous and therefore have the same capacity.  Once decoded, each 

vehicle’s route is translated into overlapping triplets.  For example, a vehicle given the 

assignment {depot, n1, n2, n3, depot} is translated into the following set of ordered 

triplets: {(depot, n1, n2),(n1, n2, n3),(n2, n3, depot)}. These triplets, which replace links or 

arcs of the traditional TSP, are reused many times throughout execution of the routing 
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algorithm.  The router has been modified with a data structure to cache previously-

requested paths.  Once a single link is calculated, it is then archived for use in subsequent 

solutions.  During the evaluation of a single candidate, all needed links are identified and 

the path planner is invoked to compute the solutions.  The parallel path planner consists 

of a master node that receives the requests from the router, and n computing nodes, to 

calculate up to n paths at a time.  The figure 3.16 describes how the router scores 

individual solutions, requests needed solutions, and caches solutions once they are 

created.  

       _________________________________________________________________ 

       Algorithm:  High-Level Interface between Planner and Router 

          _________________________________________________________________________________________________ 
       1: procedure GVRGenome::EvaluateWithRepairs(L, n, P[start][mid][end]) 

       2:     cost of route = 0, L={} 

       3:     for i in 1 to n do 

       4:            if P[starti][midi][endi]does not exist do 

       5:               L = L + (starti),(midi),(endi) 

       6:                end if 

       7:      end for        

       8:        Planner(L)     

          9:      for i in 1 to n do 

          10:           cost of route = cost of route + f(Li)     

          11:     P[starti][midi][endi] = f(Li) 

          12:       end for 

          13: return cost of route    

          14: end procedure    

          _________________________________________________________________________________________________    
Figure 3.16 Interfacing the Planner and Router Modules. 

  

  When fewer than n paths are requested, the remaining nodes are idle.  When 

more than n paths are required, the first n nodes are assigned problems to solve.  The first 

node to reach a solution then requests the next problem from the master node until all 

paths have been produced and returned to the router.  A review of previous tests using the 
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Linn-Kerigan Travelling Salesman Problem (TSP) benchmarks revealed that the router 

has a 99.5% reuse rate in links requested.  As the router’s evolutionary timeline proceeds, 

the hit rate of the archive naturally increases.  A consequence of this fact is that fewer 

routes are sent to the parallel planner as the evolution matures resulting in ever-increasing 

wasted computation time of the planner’s nodes.  To compensate for this idle time, the 

router uses three heuristics of the problem domain to request paths that are likely to be 

used later.   

In the TSP problem, all routes begin at the depot or launch point.  Therefore, 

routes containing the depot location as its first node are more likely to be found in a 

solution.  Further, all solutions of the TSP require routes to end at the depot location or 

return point.  Therefore, routes ending at the depot location are more likely to be 

contained in a candidate solution.  Finally, if all route segments that either begin or end at 

the depot have been created, then arbitrary routes are requested to fill any remaining 

nodes.  Once the needed paths of the evaluation function have been identified, remaining 

processors of the path planner are given requests to fill any idle processor slots using the 

following logic: 

 

       Algorithm: Requesting Extra Routes from the Parallel Path Planner 

          _________________________________________________________________________________________________ 
          1: procedure REQUEST ROUTES(n, m, p, P[start][mid][end], L) 

          2:     n = number of paths requested in candidate solution 

          3:     m = p-n 

          4:     while m > 0 do 

          5:          if P [depot][rand][rand] does not exist then 

          6:                 L = L + {depot, rand, rand} 

          7:                 m = m-1 

          8:          else if  P [rand][rand][depot] does not exist then 

          9:        L = L + {rand, rand, depot} 
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          10:                       m = m-1 

          11:         else if P [rand][rand][depot] does not exist then  

          12:                L = L + {rand, rand, rand} 

          13:                m = m-1 

          14:          end if 

          15:      end while 

          16:     call PLANNER(L) 

          17: end procedure 

          _________________________________________________________________________________________________ 
Figure 3.17 Requesting Additional Routes from the Path Planner.  

 

3.3.3 Parallelization of the Path Planner.  A key element of choosing a work 

partitioning scheme is whether the algorithm is dynamic (the work load varies as the 

algorithm is run) or static (fixed amount of work, known a priori.)  Using the benchmark 

TSP problem set as a guide, the cache hit rate is over 98%.  However, during the first 

solution evaluation of the first generation, no solutions exist resulting in a very large miss 

rate and correspondingly large computational requirement.  Empirical tests show that 

typical benchmarks result in about 40-50 new triplet requests in the first chromosome 

evaluated.  As the algorithm progresses, more and more solutions are cached.  This 

results in as few as zero triplets requested in the evaluation of a particular chromosome.  

Clearly the parallelization of the workload is a dynamic problem.  

 Several methods of partitioning dynamic workloads are presented in [21].  

Asynchronous round robin (ASR) is a method where each compute node attempts to get 

more work from a neighboring processor corresponding to a variable target.  The value 

of target is incremented modulo the number of processors available p.  The method 

terminates when all processors run out of work. 
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 Global Round Robin has only one target variable stored in a globally-accessible 

space.  Each processor competes for this locked variable, increments it modulo p and 

attempts to get work from that processor.  Often the contention for the shared variable 

creates a bottleneck of idle time when multiple processors are looking for work. 

 Random polling is a simple scheme in which an idle processor requests work 

from a random donor.  Each processor is chosen with equal probability so work requests 

are divided evenly. 

 Although the workload associated with each call to the GVR evaluation function 

is variable from one call to the next, the workload of each job is fairly constant.  

Therefore, partitioning is most efficiently done at the chromosome level rather than 

within the path planner itself.  This means that an efficient scheme is one that keeps each 

processor busy with as little overhead as possible.  In this design, a master node reads the 

set of required jobs from a file created by the router.  Up to p jobs are sent to the p 

available processors to process.  As each job completes, the master node sends the next of 

the remaining n-p jobs to the processor that most recently completed a job.  Once all jobs 

have been requested, any idle nodes are given a termination signal as a queue to shut 

down.  Figure 3.18 details the algorithm for dividing the workload. 

_________________________________________________________________ 

Algorithm: Parallelization of Path Planner 
_________________________________________________________________________________________________ 

  1: procedure PARALLEL_MOEA::EnvokePlanner(JJJJ , p ,n) 

  2:     jobs remaining = |    JJJJ  | 

  3:     done = false 

   4:      jobs requested = 0 
   5:      
  6:         if n > p  then   

  7:                       send p non-blocking job requests to p processors 

  8:                 jobs requested = p  

  9:               else    



3-30 

  10:               send n jobs to n processors 

   11:     jobs requested = 0          

  12:              while not done do 

  13:                 Receive job output from processor pi 

  14:                 jobs remaining = jobs remaining -1  

  15                 if jobs requested = |    JJJJ  | then             

   16:                                          sendTermination( ) to pi 

  17:                      else 

   18:                            send next job to pi 

   19:                 jobs requested = jobs requested + 1 

   20:                     end if 

   21:                     if jobs remaining = 0 then 

   22:                          done = true   

  23:                     end if  

   24:               end while 

   25: end procedure    

_________________________________________________________________________________________________    
 

Figure 3.18 Parallelization of the Path Planner.  

 

            - Enhancement of the GVR Router.  The key modification of the router is made 

in the evaluation function.  The original router created a static 2-D array of distances 

between every pair of targets in the problem instance.  As each route is decoded and 

evaluated, the program simply reads the distance from the array and added that value to 

the overall distance of the route.  The total 2-D Euclidian distance of all routes is the 

value used to determine fitness. 

 In this research, the 2-D array has been replaced with a 3-D cache of link weights 

representing the complete cost of each link triplet, {Po, Pm, Pf}.  Because only a small 

subset of all possible links are used in the Genetic Algorithm of the router, link weights 

are calculated by the parallel path planner only as needed.  These values are then cached 

and reused. 
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3.3 Summary 

 This chapter presents the design objectives of the AFIT UAV Swarm Mission 

Planning System.  The objectives are compartmentalized into three functional design 

modules: a multi-objective evolutionary algorithm-based parallel path planner, a genetic 

algorithm-based vehicle router, and a swarm behavior simulation model.  A detailed 

strategy for system-level integration is defined.  Chapter 4 presents the low–level design 

to include: the software development approach, choice of development tools, system 

architecture, data structures, methods, and the communication framework.  
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4. Low Level Design 

 

This chapter discusses the low level design details of the AFIT UAV Swarm Mission 

Planning and Parallel Simulation System.  Discussion begins with the software 

development approach used to create the individual system components followed by the 

approach used in the system-level integration.  A detailed description of the data 

structures and methods used to implement the algorithms described in Chapter 3 is 

presented along with a description of the system-level user interface. 

 

4.1 Software Development Approach 

  The software development effort consisted of four main thrusts: creation of the 

parallel path planner, modification of the existing router, modification of the simulation 

and visualization tools, and system level integration. 

 

 4.1.1 Software Development Approach of the Parallel Path Planner.  The path 

planner is developed using an object-oriented (OO) approach and is written in C++.  The 

path planner has a naturally hierarchical structure.  For example, a population consists of 

a set of paths, and a path consists of a set of points.  This structure lends itself to object 

encapsulation.  Methods are defined that act on objects at various levels of abstraction.  

Where the approach used differs from the traditional OO approach is in the area of 

information hiding.  Typically an OO design defines strict controls on the access to an 

object’s data members.  Specific methods to access or alter an object are used to govern 

the range within data must be assigned and to control which objects are authorized to act 

on other objects.  The cost of this level of control is paid in terms of the runtime stack.  
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Every pair of accessor and mutator calls result in two additional functions and their 

associated parameters being loaded onto the stack.   This cost is incompatible with the 

goals of this research.  Therefore, the use of public data members is found throughout the 

developed code.  This affords the benefit of modularity associated with object-oriented 

development without the associated overhead.    

 Parallelization of the path planner is developed using the Message Passing 

Interface (MPI).  The primary reasons for choosing MPI are its compatibility with C++ 

and its availability on the AFIT parallel clusters.  Java RMI was also available but its use 

would require an additional layer of interface between the planner and the network.  MPI 

allows the developer to define the high level communication among program nodes but 

requires minimal interaction with or knowledge of the underlying communication 

architecture.  This feature of MPI allows for greater portability of the path planner.  

 

4.1.2 Software Development Approach of the Router.  The router, created by 

Russell, is developed with principles similar to those used in the path planner.  An object 

oriented framework is used to decompose the problem logically but public data members 

were used to reduce the overhead associated with information hiding.   

Software reuse was another core concept in Russell’s design.  The genetic 

algorithm that powers the router was developed using the GALib toolkit which is freely 

available under a BSD-style license [27].   

Modification of the router is performed with the goal of minimal alteration of the 

existing code.  In the original router, a static 2-D data structure stored link weights for all 

possible links in the graph.  This was replaced with a larger 3-D data structure which is 
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populated by invoking the parallel path planner.  No modifications were made to the 

underlying genetic algorithm within the router nor were any significant modifications 

made to the program’s interface.       

 

 4.1.3 Software Development Approach of the Simulation and Visualization 

Tools.  The Simulator is built on top of the SPEEDES parallel environment.  A high-level 

object oriented approach is used in its development.  Objects are defined for UAVs and 

targets, but further object-based decomposition methods are not used.  The code is 

modified to add the additional functionality described in Section 3.5 while maintaining as 

much of the original program structure as possible.  By maintaining the program’s core 

constructs, future research can augment this work with minimal integration problems. 

The code is written and compiled under BSD C++.          

 

  4.1.4 Software Development: System Level Integration.  The underlying 

goal of the system integration effort is modularity.  The system consists of distinct 

components each with separate functionality.  File I-O is the main form of 

communication among the components.  This minimizes dependencies among the 

modules and allows for replacement of the system’s components.  For example, the target 

set and vehicle list are fed via file input to the router.  The router in turn creates a file-

based list of paths it requires.  Any path planning algorithm could be used providing it 

could read the input data file.  For example, a path planner for stealth aircraft or higher-

altitude reconnaissance aircraft would be less reliant on TF capabilities and would require 

other optimization criteria such as radar cross section. Replacing the planner with another 
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would require minimal effort. Specifically, the data interface would need to be modified 

to be compatible with the router.  File I-O is significantly slower than using shared 

variables, but its use requires much fewer dependencies between the programs thus 

making the system more modular.    

 

4.2 Parallel Path Planner 

 The path planner consists of a domain-specific genetic algorithm and a low-

overhead parallel architecture that allows for moderate scalability in the size of the 

routing problem.  The specific methods and data structures used in the planner are 

defined.  The data structures of the path planner are contained in a hierarchy.  The main 

program has a population object, which consists of a number of path objects, which 

consist of a number of point objects.  A single terrain object is created in the main 

program.  The terrain object stores the DTED data and threat location and range 

information.  Pointers to the terrain object are passed to population and to the individual 

routes. Figure 4.1 depicts the basic class structure of the path planner.    

                    

Figure 4.1 Class Diagram of the Path Planner. 
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 4.2.2 Population.  In the path planner, a population consists of an array of 50 path 

objects.  The array data structure facilitates O(1) access to individual members of the 

population.  Many of the evolutionary operators used in the algorithm iterate through the 

population so an array was a logical choice.  In addition to the current population, a 

similar array structure is used to store the Pareto front archive.  Once the population is 

initialized, all non-dominated members are copied and stored in the archive.  With each 

evolutionary cycle, the current population is compared to the archive and dominated 

members are removed from the archive while new non-dominated solutions are added.  

Methods of the population include Init(), Evaluate(), Evolve() Sort(),and Determine 

Dominance(). 

 - Init Method.  During initialization, all 50 path objects of the population are 

created with the three point objects, start, middle, and end.  Once the three point path has 

been created, a repair function is called to determine whether the heading change required 

in passing the midpoint is greater than 45 degrees.  If it is, the repair function inserts 

points around the midpoint so that each turn is at most 45 degrees.  This method uses the 

modified convex hull algorithm which is detailed in Appendix B. After repair, each path 

is then augmented with a set of random connecting waypoints.  The random number 

generator used to select the location of the points called the Mersenne Twister. Details on 

the Mersenne Twister are found in [33].  The number of points added is proportional to 

the distances between the start and midpoint and between the mid and end point.  

Because of the 45 degree turn constraint, the area from which a random point is selected 

is restricted to ± 5 grid units in both X and Y directions from the midpoint of the line 

segment that connects the two points between which the new point is inserted.  After each 
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insertion is made, a check is done to ensure that the addition of the point does not violate 

the feasibility constraint.  If a violation occurs, the point is removed from the path.  Once 

the population has been initialized, the Evaluate() method is called on the population.  

Figure 4.2 shows the initialization of a single chromosome in three steps. 

           

       

Figure 4.2 Chromosome Initialization. 

 

 - Evaluate Method.  The evaluate method is essentially a wrapper function that 

invokes the evaluation function of the path class which is described in section 4.2.3.  

Statistics for the population such as average cost score and average risk score are 

maintained in this method to give a window into the success of the evolutionary cycle.  

As the planner is further developed, these statistics can be used to adjust evolutionary 

parameters to speed up or slow down the rate of convergence.  Once the population has 

been evaluated, it is sorted using the sort method.   

    

 - Evolve Method.  Evolution consists of selection, crossover, and mutation 

operations.   The selection operator chooses half the population for selection based on 

their rank.  The population is grouped into quintiles.  In the top quintile, nine of the ten 
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members are randomly selected, In the second quintile, eight are chosen and so on until 

only two members are chosen from the bottom quintile.  Once selected, the members are 

randomly selected for crossover.  The crossover is performed as described in Figure 3.5.  

After crossover, each member of the next generation is mutated.  The three mutation 

operators discussed in Section 3.1.    

 - Sort Method.  There are several ways to sort the population which are controlled 

by passing the desired method as a parameter.  The population is sorted by cost and then 

by risk to determine the dominance.  It can also be sorted by the total score.  Because of 

the limited population range, a trivial local serial sort algorithm is used. 

   - Determine Dominance Method.  There are two main phases in this MOEA 

method.  The first looks for non-dominated members in the current population.  The 

dominance rank of the member is the main selection criterion.  The second phase 

compares the new rank sorted population to the Pareto front archive to determine global 

dominance.  In a for loop structure, each member of the population is compared to every 

other member by its risk and its cost scores.  If existing Pareto members are now 

dominated by members of the current population, they are removed; if members of the 

current population are non-dominated with respect to Pareto front members, they are 

added to the archive.    

 

   4.2.3 Path Object.  The path object is the chromosomal unit representing 

complete, individual solutions to the path planning problem.  The path ADT consists of a 

linked list of point objects representing the flight plan, a set of statistical data including 

number of points and evaluation function scores, and a set of fixed data which includes 
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the start, middle, and end points and a pointer to the terrain object. Figure 4.3 highlights 

the main data members of the Path ADT. 

     

Figure 4.3 Data Members of the Path ADT. 

 

 Methods of the Path ADT include a constructor, copy constructor, add and delete 

point operations, point retrieval operators, repair operator, and a set of evaluation 

functions. 

 - Constructor.  A path object is created with three point parameters representing 

the start, mid, and end points, a pointer to the terrain object, and an integer value, set 

clearance which is the AGL altitude the vehicle maintains during terrain following 

operations. 

 - Add/Delete Point.  Given the linked structure of the path, the add and delete 

operators must iterate through the list of points to reach the index of insertion/deletion.  A 

call to add a point with a value of 5 inserts the point after the 5
th

 point in the list.  Once 
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the point is added, the heading is recalculated for the previous point and then calculated 

for the point inserted.  A call to delete point with a value of 5 deletes the 5
th

 point and 

adjusts the heading and pointer configuration of the 4
th

 and 6
th

 (now 5
th

) point.  Because 

of the doubly linked structure of the path, only a single search for the insertion/deletion 

location is required to access all three points required to perform either operation.  These 

operations are of course O(n). 

 - Repair Operator.  When an insertion, deletion or alteration operation is done on 

the path, the feasibility constraint is often violated.  If there is sufficient space between 

the points of the invalid segment, the repair function adds additional intermediate points 

to smooth the turns.  The repair operator returns a value of true if the repair is successful.  

When false is returned, the calling module cancels the operation and returns the path to 

its previous state.  Since the repair function is called only after the location of the point in 

question is known, no searching is required by this method.  The number of operations 

needed to validate the heading changes between the points is constant O(c).  

 - Evaluation Functions.   Two main evaluation functions are used to determine 

fitness of candidate solutions.  The first function, cost, is a composite of the Euclidian 

Distance and the amount of climbing required for a path.  The second, risk, is a 

composite of the hideability score, the linear distance of intersection between the path 

and a threat detection ring or kill ring.      

  - Cost Function.  The distance portion of the cost function, simply starts at 

the path head and calculates the distance between the current point and the next until the 

end of the linked list of points is reached.  In the climb function, the path is overlaid on 

the terrain grid.  The sequential ordering of grid locations is mapped from the points in 
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the route by means of the utility function getNextBlock().  The function then calculates 

the difference in elevation between the current grid point and the next.  If there is an 

increase, the altitude difference is added to the cost.  If there is a decrease, the score is 

unchanged.  There are two primary reasons for this. First, since the vehicle returns to its 

starting location, there is zero net difference in elevation, thus the cost of climbing can be 

thought to include the eventual cost associated with descent.  Further, climbing requires a 

great deal more energy (fuel) than descending. 

 - Risk Function.  The intersection between the path and both threat and kill rings 

are determined exactly the same way as the climbing function.  The costs of crossing 

through a single grid space in either a threat detection or kill zone is a parameter that is 

passed to the path planner at runtime.  The hideability score is calculated by summing the 

number of visible points associated with each grid space the path intersects.  These points 

are identified by the getNextBlock() function.1 The relative weight of hideability versus 

detection is also parameterized.   

 

 4.2.4 Point Object.  The Point ADT is the allele of the path chromosome.  Other 

than constructor/destructor operations, the point consists of only data members and 

pointers.  Every point contains a pair of integer (x,y) coordinates, and integer altitude 

(feet MSL), an integer set clearance, and a heading.  Pointers are maintained for next and 

previous points.  The set clearance is the same as that of the path object, but it is 

maintained in the point object for future use, such as creating routes with different terrain 

following altitudes for different route segments.  This capability is not implemented at 

present.  
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 4.2.5 Interface to the Router Module.  As described in Section 3.2, the router 

relies on the parallel path planner to determine the cost of each link or path in the route.  

These costs are stored in two 3-D integer arrays.  The first array, 

cost_matrix[n][n][n], stores the cost of the complete path {Pi, Pj, Pk}.  The 

second array, half_cost_matrix[n][n][n], stores the cost of the path only from 

the point Pj to Pk.  This is needed because as the links are concatenated, there is an 

overlap between each link.  This overlap is centered on the mid point and ensures that 

any 3-point link can be appended to any other 3-point link without violation of the turn 

constraint.  Only the first link in the route, the segment which contains the depot or 

origin, is given the full cost of the link.  The path planner returns both costs so the two 

arrays are maintained in parallel.     

 To maintain independence between the router and the path planner, the two 

modules use file I/O as their primary communication method.  A complete set of path 

requests are written by the router and stored in a file, linkFile.  The router then calls the 

planner with the system command.  The planner reads the link file, generates all requests, 

writes them to a file, pathFile, and terminates.  Termination of the path planner causes 

the system command to terminate which signals the router to continue.  The router then 

reads the route scores from the path file, updates the two caches of scores, and completes 

the evaluation of the solution.  Figure 4.4 expands the algorithm given in figure 3.2 and 

details the integration of the router with the planner 
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 Algorithm:  Integration of Planner with Router (Low Level) 

          _________________________________________________________________________________________________ 
       1: procedure GVRGenome::EvaluateWithRepairs(R, cost_matrix[n][n][n],          

                             half_cost_matrix[n][n][n]) 

       2:     int cost of route = 0 

       3:     for i in 1 to |R| do 

       4:            decode_route(int* route, int* links) 

       5:          for i in 0 to | links |do 

       6:                  if cost_matrix[i][i+1][i+2] = 0 then 

       7:                      write(linkFile, i,i+1,i+2) 

       8:                end if 

       9:          end for        

       10:   end for         

       11:     system(planner.exe, linkFile, pathFile);    //invoke planner 

          12:    open( pathfile )    

          13:   for i in 1 to pathFile.size do 

          14:           cost_matrix[pi][pj][pk] = Pi.cost     

          15:              half_cost_matrix[pi][pj][pk] = Pi.half_cost     

          16:    end for 

          17: return cost of route    

          18: end procedure    

          _________________________________________________________________________________________________    
Figure 4.4 Invoking the Path Planner from the Router. 

 

Because genetic vehicle representation assumes routes beginning and ending at 

the depot location, the depot is not explicitly encoded in candidate solutions on the router.  

The path planner however requires explicit description of all three points required.  The 

DecodeRoute procedure converts contiguous routes into triplets and ads the depot 

location to the beginning and end of the route.  Figure 4.5 illustrates the DecodeRoute 

procedure.  
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       Algorithm:  Decode Route 

          _________________________________________________________________________________________________ 
       1: procedure Utils::DecodeRoute(int* route, int* links) 

       2:       links[0]=0     //preface route with depot location  

       3:       for i in 0 to |route| -1 do 

       4:              links[i]=route[i] 

       5:       end for 

       6:         links[|links|-1]=0    //append depot to end of list 

       7: end procedure    

          _________________________________________________________________________________________________    
Figure 4.5 Decoding Routes into Triplets. 

 

 4.2.6 Parallelization.  As described in chapter 3, parallelization is performed at 

the problem instance level.  As the router requests multiple path links, the path planner is 

run in parallel to solve up to p requests at a time.  The Message Passing Interface (MPI) 

is used as the development framework for the parallel communication.  MPI is preferable 

to other available communication environments for two reasons.  First, MPI is C/C++ 

based so it is easier to integrate with the planner versus Java RMI which is also available. 

Secondly, MPI is independent of the underlying physical architecture.  It is therefore 

more portable from one parallel cluster to another than a custom-built communications 

model would be.  Appendix C. describes the basic MPI constructs used in this design.  

 

 - Parallel MPI Algorithm.  This section defines how the path planner is 

parallelized using MPI constructs.  To illustrate the program flow, this description is 

given in the pseudocode of Figure 4.6. 
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// Initialize: MPI_Init(), MPI_Comm_rank() 
 
int me; // node number 
 
if me = 0 then // Code for Master Node 
 
 MPI_Broadcast(); // Send Terrain Data 
 MPI_Barrier();   // Wait for all to receive 
 MPI_Braodcast();    // Send Threat Data 
 MPI_Barrier();   // Wait for all to receive 
 
  
 // load each processor with a job 
 for i in 1 to p do 
  MPI_Send(); //send single job to node 
  MPI_Irecv();// non-blocking receive from slave node 
 end for 

 
 //Test for 1st job to complete 
 while jobs_remaining > 0 
  MPI_Test(); 
  if job has been received then 
   write output to file 
  end if 

  if more jobs to request 
       MPI_send();  //send next job to first available p 
  else   

       MPI_Send();  //send termination signal to p 
  end if 

 end while 

  
else // Code for slave nodes 
 MPI_Bcast();  //broadcast receive of terrain 
 MPI_Barrier();  //wait for others to receive 
 MPI_Bcast();  //broadcast receive of threat data 
 MPI_Barrier();  //wait for others to receive 
  
 bool quit = false; 
 while quit = false do 
  MPI_Recv();  //receive first data request 
  if termination signal received then 
   quit = true 
  else 

   run path planning algorithm 
   MPI_Send(); //send results to master node 
  end if 

 end while 

end if 

 

Figure 4.6 Low-Level Parallelization of the Path Planner. 
 

4.3 Swarm Simulation 

 This section discusses the parallel swarm simulation.  First, a discussion of the 

simulation’s underlying architecture, i.e. Synchronous Parallel Environment for 

Emulation and Discrete Event Simulation (SPEEDES) is presented.  Next various modes 
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of simulation execution are contrasted.  A comprehensive list and description of attributes 

and methods is given followed by a description of the visualization system used to 

playback the simulation. 

 

 4.3.1 The SPEEDES simulation environment.   SPEEDES is an open-source 

parallel discrete simulation framework developed in C++.  Its primary purpose is to allow 

users to develop small and large optimistic time-managed simulations [57].  

Parallelization of the simulation allows for simultaneous processing of events.  Optimistic 

processing of events enhances performance by allowing some events to be processed out 

of order.  Out of order execution avoids delaying received events scheduled at a future 

time, while waiting on the receipt of all events from earlier times.  The AFIT UAV 

Swarm Mission Planning System uses the SPEEDES framework as its simulation engine.  

This section discusses the major elements of the SPEEDES framework used in this 

research. 

 

 - Simulation Engine.  SPEEDES is a collection of C++ classes and an API that 

allows users to build simulations.  Objects are the fundamental building block in a 

SPEEDES simulation.  Simulations proceed as events are scheduled on objects.  At the 

core of the simulation engine is a custom data structure called the Qheap.  The Qheap 

manages lists of pending events and has been measured to be more than two times as 

efficient as traditional splay trees which are traditional event handling objects [57].  

Additionally, the engine also has a fast internal hashing scheme that supports event 

cancellation and quickly associates events with objects.  
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        - Objects.  All state data representing an entity belong to a simulation object.  

Using an inheritance structure, all simulation objects are written to inherit from the class 

SpSimObj.  This root class provides basic functionality such as the ability to schedule 

events, process event handlers and respond to interactions.  Objects require methods that 

represent events taking place on the object.  Once the object and its methods are defined, 

they are plugged into the simulation. 

 Objects are managed by object managers.  One object manager is created for each 

type of object on each node in the simulation.  Object managers create the objects on 

their nodes, initialize and clean up processes, perform dynamic object creation, manage 

subscriptions to interactions and event handlers, and manage subscriptions by external 

interfaces to object data. 

    - Events.  Events act on simulation objects by altering their state information.  

Each event acts on a single object.  The ordering of events is handled by a scheduling 

function.  An object may call an event on itself, on another object or they may occur 

autonomously.   

 - Event Handlers.  Events are often complex and require information about the 

world outside of an object to be meaningful.  To this end, event handlers are developed 

for objects to schedule events on objects.  They include a feature called a trigger which 

provides the ability to execute an event or not based on a parameterized set of Boolean 

conditions. 

 - Proxies.  The ability of an object to learn of the existence of other simulation 

objects, to determine the node location of a particular simulation object, and to retrieve 

state information about another object comes from Proxies.  Because SPEEDES 
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simulations are run on multiple processors, proxies are vital for handling communication 

between objects on different nodes.  In simulations occurring on a single node, shared 

variables could replace this functionality.  At initialization, an object’s attributes are read 

from a parameter file, Objects.par.  A proxy maintains the objects updated attributes and 

manages the transmission of this information to the outside world.   

 - External Interfaces.  SPEEDES simulations calculate state information for all 

simulation objects for the complete simulation time.  In order to use this information, 

external interfaces are used to retrieve this global information for analysis and 

visualization.  The SPEEDES API allows programmers to create external objects to 

collect simulation information.  In this research, a Distributed Interactive Simulation 

(DIS) module is interfaced with the SPEEDES simulation to collect UAV vector 

information which is then visualized.  

 - Breathing Time Warp Algorithm.  Discrete event simulations can proceed under 

one or more scheduling methods.  These can be divided into two main categories: 

conservative and optimistic.  Most simulations are subject to the causality constraint 

which ensures that events are processed in order with respect to time.  There are cases 

where causality is relevant and there are those when it is not.  For example, consider a 

scheduled pair of events: UAV 1 fires at target 1 at time t=3 and target 2 fires at UAV 1 

at time t=2.  Because UAV 1 is likely effected by the event at t=2, a simulation cannot 

process the events out of order.  On the other hand, if the events were completely 

independent, the order would not matter. 

 A conservative simulation ensures that causality is always maintained by 

processing events in strict time-stamped order.  This method guarantees the simulation 
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behaves correctly with respect to time.  A disadvantage is that possible benefits gained by 

parallel processing of events are often negated by having to wait for earlier events. 

 On the other side of the spectrum, optimistic simulations process events as they 

are received, with out regard to the causality constraint.  This of course minimizes wait 

times and results in faster runtimes.  The disadvantage here is that when dependent events 

are processed out of order, the simulation reaches an unrealistic state and produces 

incorrect results.  To counter this effect, optimistic simulations require the ability to 

rollback state information to an earlier time whenever dependent events violate the 

causality constraint.  Two early strategies for managing optimistic simulations were Time 

Warp and Breathing Time Buckets.         

The Time Warp mechanism is based on the notion of global virtual time (GVT).  

In GVT, simulation time is synonymous with simulation time.  It is purely optimistic, 

processing events as they are received without regard to causality [16].  If the past is 

changed and this change affects the current state, then the simulation is rolled back to the 

time before the violation occurred.  Then, anti-messages are created to nullify future 

events that do not account for the change in the past.   

In the Breathing Time Buckets algorithm [47], Processors handle events, 

exchange messages, perform rollbacks, and advance the simulation time in cycles.  In 

each cycle, all events that do not precede one another are run.  The minimum time of all 

events is called the global simulation time (GST).   Each processor calculates its own 

approximate GST by noting the receive times of all messages sent by the events it 

processes [58].   
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Each one of these approaches has shortcomings. Time Warp is subject to constant 

rollbacks which can result in an unacceptable amount of anti-messages. Breathing Time 

Buckets may not be able to process enough events per cycle to remain efficient. A hybrid 

of these two algorithms, Breathing Time Warp (BTW), was developed in the 

Synchronous Parallel Environment for Emulation and Discrete-Event Simulation 

(SPEEDES) [58] and is used in the this research.  The BTW algorithm is run in four 

distinct phases.  In the first of these, the Time Warp Phase, the first N events processed 

beyond the GVT have their associated messages sent out.  Next, the Breathing Time 

Buckets Phase processes events but does not release the messages.  Instead, they are 

saved within the events.  The event horizon is estimated using the minimum time tag of 

all unsent messages.  Once the simulation proceeds through the event horizon, the third 

phase, GVT, is executed.  During this phase, each node reads incoming messages and 

monitors whether the number of messages sent equals the number received.  Once this 

condition is met globally, the GVT is set to local virtual time (LVT).  In the final phase, 

all messages which have not been sent are sent synchronously from all events with time 

tags not greater than the GVT.  Event lists are then cleaned up and the system returns to 

the Time Warp phase. 

The swarm simulation uses a hybrid approach to event handling.  Under normal 

operation, simulation time advances with all vehicles following their most recent 

trajectories.  Adjustments in attitude are made in the vertical as each vehicle advances 

through the terrain.  On a periodic time interval, the UAVs communicate with one 

another to determine the degree of rules violation developed since the last 

synchronization.  During this time, the simulation can proceed in a conservative mode, 
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i.e. wait until all messages are received from all neighbors, or it can attempt to move 

forward with only a partial message set.  If a UAV advances, but requires information 

received later, the simulation rolls back.  If however, missing messages are not needed 

once received, then the simulation does not roll back.  BTW is used in the later case.  The 

experiments in Chapter 5 contrast the cost savings in permitting optimistic processing of 

messages versus the time spent in rollback.   

When any member executes a sudden, sharp terrain-induced climb, that member 

will trigger an automatic synchronization to ensure that the swarm maintains its 

configuration.   The frequency at which the swarm enters the scheduled synchronous 

mode and the threshold at which UAV velocity changes trigger non-scheduled 

synchronous operation are developed empirically in Chapters 5 and 6.  

 - Rollback Types. As discussed earlier, the use of any kind of Time Warp requires 

the ability to revert to an earlier state whenever the local causality constrain is violated.  

SPEEDES provides rollbackable data types to accomplish this.  Nearly all common 

C/C++ data types have rollbackable countertypes in SPEEDES.  In this research, two 

rollback types: RB_Int and RB_Double are used to rollback prior position and velocity 

attributes of UAVs.    

  

4.3.2 Simulation Objects and Behaviors.  The primary object used in this 

simulation is the UAV which is called S_UAV.  At initialization, the S_UAV properties 

are initialized as static data members and read from a parameter file, Formation.par.   

These properties include: 

- NumInitUavs – The number of UAVs in the swarm at initialization 
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- swarmHeight – The number of vertical layers in the swarm formation 

- swarmWidth – The width of the swarm in number of UAVs at the center 

- swarmAltitude – The terrain following altitude (AGL) of the center swarm layer 

- swarmSeparation – Distance between swarm members at 45 degree angles 

- simTimeInterval – Time step for the simulation output 

- uavSpeed – Cruising Speed of UAVs under normal conditions 

- percentPath<0-n> - Allocation of swarm assets to each sub-swarm 0-n    

Once swarm members are assigned their initial targets, their individual attributes 

are initialized: 

- xCoordinate – Longitudinal coordinate 

- yCoordinate – Latitudinal coordinate 

- zCoordinate – Altitude (MSL) in feet 

- thetaCoordinate – Heading Angle  

- phiCoordinate – Climb/descend angle 

These individual variables are rollbackable, representing each UAV’s current 

direction and position information.  Additionally, each UAV maintains a copy of its route 

which is the set of target coordinates.  In the simulation, target coordinates represent not 

only actual targets, but also minor waypoints.  These points are generated by the path 

planner and passed to the simulator as input.   

As described earlier, functions that act on simulation objects are mapped to 

SPEEDES event types.  The following functions perform the bulk of operations on the 

UAV objects.  The functions are named and they are mapped to events of the same name 
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but prefaced with “UAV.”  For example, the function vehicleMove() is mapped to the 

event UAVvehicleMove.  Descriptions of these functions are: 

- vehicleMove() – This is the main function that drives the UAV’s behavior.  

During normal (unsynchronized mode ), it uses knowledge of the vehicle’s distance to its 

next target to generate its next velocity vector.  In synchronize mode, the function also 

uses position information of its neighbors to generate its next velocity vector. 

In the synchronized mode, the function begins by determining its set of neighbors.  

First, all UAVs for which the vehicle has information are sorted by distance.  Then, the 

function loops through the ordered neighbors and assigns them into one of the 13 nearest 

neighbor slots.  Once a neighbor is assigned, its shadow is calculated to determine which 

nearby vehicles should be removed from consideration.  Because the list of UAVs is 

sorted, shadowing never causes a closer UAV to be obscured by a more distant one.  

Once this process is complete, each neighbor is analyzed to determine how far off it is 

spatially from the vehicle.  A unit vector is generated to show the required movement the 

vehicle needs to make to conform to the rule of separation.  This unit vector is then 

multiplied by a weighting factor which is proportionate to the degree of rules violation.  

The vectors generated by the complete scan of neighbors are then added to produce a 

resultant vector called vectAttract.  This vector is then given a weighting factor α and 

added to the target distance vector which is given a weight of 1-α.  The resultant vector is 

then used to update the UAVs motion. 

When operating in unsynchronized mode, the neighbor vectors are not calculated 

and the target distance vector is given the full weight, i.e. α=0.  The major methods of 

the simulation are: 
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- swarmSync() – This function (event) causes the simulation to enter synchronous 

mode so that the swarm can adjust to maintain formation.  It is scheduled periodically and 

whenever an individual makes a sharp change in direction.  If the vehicle is engaged in a 

turn while this method is executing, the swarm uses its most recent neighborhood to 

adjust motion. If the vehicle is not engaged in a turn maneuver, then the members will re-

calculate their neighborhood before adjusting their motion vectors. 

-turnSync() – This event is scheduled on every UAV when the first swarm 

member reaches its next waypoint and lasts until the last member has cleared the 

waypoint.  During this time, the neighborhoods are considered to be “fixed.”  Within 

each fixed neighborhood, the members synchronize at each simulation time step.  This 

additional synchronization is designed to keep the swarm in formation during turn 

maneuvers.  This event schedules a swarmUnSync() event when the last UAV has cleared 

the waypoint. 

- swarmUnSync() – This event is scheduled several seconds after the swarm enters 

synchronized mode.  It ensures that the vehicles use only the target distance vector to 

process their next movement vector.  

- removeUAV() – When a UAV has completed its mission (or in future 

implementations, when the UAV has been destroyed), it is removed from the simulation.  

Members who subscribe to this particular UAV will no longer look for updates from this 

vehicle.  Table 4.1 shows a typical execution segment highlighting events in the 

simulation. 
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Table 4.1 Typical Swarm Simulation Event Sequence. 

 
 

 4.3.3 Object Proxies and Communication.  Because of the two main modes of 

operation, synchronized and unsynchronized, it is not necessary to continuously check for 

updates.  This reduces the communication overhead considerably.  Object proxies are 

queried only during execution of the moveUpdate() function and then only when 

operating under synchronized mode. 

  

 4.3.4 Visualization.  The swarm model output is visualized offline after the 

simulation has completed.  Two primary tools are used to provide this visualization: 

SkyView and the DIS Interface.  These tools are the products of previously funded 

government research.  They are commonly used in DoD research and are freely available 

within DoD.   

  



 4-25 

 

 -SkyView.  Developed by the Georgia Tech Research Institute [20], SkyView is a 

three-dimensional terrain rendering program.  It provides perspective views of areas of 

terrain based on satellite imagery and digital terrain elevation data. The software was 

developed using OpenGL and is freely distributed throughout DoD.  The swarm 

simulation output is converted and visualized using SkyView.  In this research, an 

operational battle space is created from DTED and imagery over Nevada in the vicinity 

of Nellis AFB.  Figure 4.7 shows a SkyView rendering of this gaming area. 

        

Figure 4.7  SkyView Terrain Visualization. 

 - DIS Interface.  The SPEEDES simulation interfaces with an external module 

called the DIS Daemon.  This module converts the model output, which consists of time-

stepped UAV position and heading information, and transmits it to SkyView using the 

DIS communication framework.   SkyView was specifically developed to interface with 

DIS.  The module was developed by the sponsors of this research (Lt. Nick Amato, 



 4-26 

 

AFRL/SNZW).  Using the raw position and heading information, the DIS Interface 

interpolates UAV attitudes and provides the ability to visualize UAVs climbing, 

descending, and turning.   

 

4.4 Summary. 

 This chapter described the low-level design used in developing the AFIT UAV 

Swarm Mission Planning System.  A detailed description of the methods and data 

structures used to implement the design of Chapter 3 is presented. Chapter 5 discusses the 

design of experiments used to validate the various design capabilities and limitations and 

to measure the system’s performance characteristics. 
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5.  Design of Experiments 

  

This chapter describes the experiments conducted in this research.  Recall from 

Section 1.3, that this research consists of three main components, a parallel path planner, 

vehicle router, and a UAV swarm simulator.  The router is designed and tested in prior 

research [49] and is not extensively tested here.  It is used primarily to input the problem 

instance into the overall simulation.  It uses the parallel path planner to create individual 

route links which are then used to solve the CVRP.  From there, the CVRP solution, 

complete with optimized paths, is given to the UAV swarm simulator where the swarm 

behavior model is applied to the problem and the results are visualized. Experiments 

conducted focus on two general areas: validation of the parallel path planner and 

effectiveness and efficiency of the swarm simulator.  The testing approach is defined, as 

are the specific metrics used to gauge the system’s overall performance.    

 

5.1 Validation of the Path Planner 

 The primary purpose of the path planning algorithm is to effectively solve a 

particular form of the general path planning problem.  Specifically, the path planner 

solves a three-target problem.  The problem formulation is chosen to maintain 

compatibility with the Traveling Salesman Problem (TSP) and its variants (the VRP, 

CVRP, and CVRPTW).  The experiments designed to validate the planner therefore focus 

on its effectiveness.  Since the planner has several optimization criteria, the experiments 

focus on these individually. 
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5.1.1 Testing the Planner’s Ability to Minimize Climbing.  In this experiment, an 

artificial terrain field is created with a geometrically simple shape.  The planner optimizes 

a route to the target by minimizing the climbing associated with the created path.  Like all 

paths solved by the planner, this scenario consists of start, middle, and end locations.  In 

between the straight-line path connecting the points are two large areas of high terrain 

which the planner must avoid.  No threats are used in this experiment.  Further, the 

weight associated with climb cost is maximized and the weight associated with distance 

is minimized to demonstrate the satisfaction of this single objective.  Figure 5.1 shows 

the path to plan and the terrain. 

            

Figure 5.1 Terrain Avoidance Problem. 

 

5.1.2 Illustrating Tradeoffs Between Cost and Risk.  In this experiment, a real-

world route is planned over Nevada in the vicinity of Nellis Air Force Base.  The path 

planner is run first to minimize the cost of the route by minimizing distance and the 

amount of climbing associated with navigating the route.  Then, the route is optimized to 
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reduce risk.  Hideability, the degree to which vehicles remain out of site of potential 

unknown threats is used as the optimization criterion.  Figure 5.2 below shows the three-

point route for the planner to solve overlain on a visualized DTED field. 

 

 

Figure 5.2 Nellis Route Over DTED Field. 

5.1.3 Comparing the Planner to the Terrain Following Optimizer.  This 

experiment compares the effectiveness of the path planner with AFRL’s TFO algorithm.  

Three-element target packages are created along with a grid of real world terrain and a 

realistic threat lay down.  The planner is run in single-objective mode and its solution is 

scored and recorded.  The TFO is run and the output is passed into the evaluation 

function of the planner.  The results are then compared.  Because the TFO runs on a 

single processor Windows machine and the planner runs on a Linux cluster, no 

meaningful analysis of execution time can be made.  Therefore, the cost function is the 

only means of comparison.  The route used in this experiment is the same one as the 
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previous experiment shown in Figure 5.2.  To provide better geographic reference, the 

problem instance is shown on a CADRG navigation chart in figure 5.3. 

   

Figure 5.3 Nellis Route Over Navigation Chart. 

 

 5.1.4 Efficiency of the Parallel Path Planner.  There are two general uses for the 

path planner.  As a stand alone unit, the path planner is multi-objective, i.e. it provides 

decision makers with a range of solutions to a particular problem instance.  The second 

use is to generate link solutions to the larger capacitated vehicle routing problem 

(CVRP).  To measure the efficiency of the parallel path planner, the runtime of the serial 

version is compared with multiple-instance parallel runs of the algorithm.  With this 

information, the scalability and speed-up of the algorithm is determined.  The problem 

instance of section 5.1.3 is suitable for this experiment because the route: covers a wide 

range of the problem space, tests the repair function for a sharp turn, and is overlaid on a 
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varied, real-world terrain space where Terrain Following Missions have been flown.  

Table 5.1 shows the parallel configuration of the test set conducted on AFIT’s BANFF 

Beowulf cluster. Each test is run 30 times and the average runtime is computed.  

Table 5.1 Parallel Problem Test Cases. 

 
 

5.2 Integration of the Path Planner with the Router. 

 Modifications to the router only affected the data used by the routing algorithm.  

Naturally, scores from the path planner differ greatly from the static point-to-point scores 

originally used by the router.  Experimentation in this area focus only on the ability of 

router to: successfully invoke the planner, make use of the planner’s path scores, and 

complete its genetic routing algorithm.   

 

5.3 Evaluating the Improved Swarm Simulator. 

 In the previous version of the swarm model, a 2-D swarm was placed into a 

uniform terrain region with targets or points of interest.  The model demonstrated limited 

capability to find targets while conforming to the swarming rules discussed in chapter 2.  

In this section, a suite of experiments is developed to test the effects of the additional 

model capabilities on the swarm model.  Table 5.2 illustrates the behavior enhancements 

of this research as they relate to the previous model.  Testing focuses on adherence to the 

swarm rules as defined in Section 3.3 and the scalability of the enhanced model.  The 

three major behavior enhancements are tested independently and collectively.  
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Table 5.2 Swarm Model Behavior Enhancements. 

  

5.3.1 Validation of Adherence to Swarm Rules.  Specific actions taken by the 

vehicles to reach targets, often conflict with the swarming rules.  These experiments test 

the ability of the swarm to maintain its physical integrity while reaching all assigned 

targets in the route.  Each of the following experiments use a common set of information 

to determine the adherence to the swarm rules.  This information is derived offline from 

the simulation output file: 

Neighborhood:  A neighborhood, defined in Section 3.5.2, is calculated for each 

swarm member at each time step in the simulation output.  Each neighbor has a required 

separation parameter based its position relative to the central UAV as defined in the 

parameter file.   

Rules Threshold:  To separate consequential rules violations from minor ones, a 

threshold violation level is set at 20% of the separation parameter.  Rules violations in 

this experiment are then determined by instances when a vehicle’s separation from any of 

its neighbors differs from its required distance by %20± .   

Split Operation:  The split operation defined in Section 3.4 is referenced 

throughout the remaining chapters. Figure 5.4 illustrates the split concept. It shows the 

top-down view of the swarm immediately after performing a split operation.  The swarm 

size and sub-swarm assignment in the figure are used throughout the experiments.  
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Figure 5.4 Top Down View of Swarm After Split Operation. 

 

5.3.2 Swarm Rules Experiment Sets.    

-Experiment Set 1.  Objective:  Observe the effect of the Path-following behavior 

on the swarm’s cohesiveness.    

              - Metrics:  From the simulation data, the average neighborhood size is calculated 

over time.  The expected neighborhood size is defined in Table 3.1.  Deterioration of 

neighborhood size is indicative of the swarm spreading out beyond its intended range.                

               -Method: The simulation is executed over flat terrain with only a single vertical 

layer.  This configuration allows for isolation of the effects of path following from other 

model enhancements.  For each time t in the simulation, the average neighborhood size is 

calculated using equation 5.1.           
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Another measure of compliance is the degree to which rules are violated.  Equation 5.1 

measures how often the simulation is in a state of violation.  To measure the degree of 

violation, the absolute value of each UAVs violation in meters is calculated at various 

time steps in the simulation.  Equation 5.2 quantifies the magnitude of rules violations as: 
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Where vectdiff(i,j) is the separation vector between the i
th

 and j
th

 vehicles and req. 

separation is the position-dependent separation distance required by the model’s rules.  

 -Experiment Set 2.  Using the same metrics of experiment set 1, the simulation 

adds terrain and terrain following behavior to the model.  Any deterioration of 

cohesiveness observed between set 1 and set 2 illustrates the degree to which terrain 

following stresses swarm cohesion. 

 - Experiment Set 3.  In this test, the swarm is configured in multiple vertical 

layers and the simulation is executed with the same path following and terrain properties 

in experiment 2.  The addition of multiple vertical layers tests the 3-D swarm shape 

proposed in this research as a viable formation model. 

 -Experiment Set 4.  In this set, the terrain is removed from the configuration used 

in Set 3.  Differences in rules adherence between experiment sets 3 and 4 further enhance 

the validation of the swarm shape.   



 5-9 

 - Experiment Set 5.  In addition to model behavior enhancements, the ability of 

the swarm to remain cohesive is influenced by the frequency at which the swarm 

synchronizes its movement.  This experiment encompasses all three behavior 

enhancements of table 5.2 and measures the rules adherence as a function of 

synchronization period. Because Synchronization is costly, this test implicitly provides 

trade-offs between rules adherence and execution time.  The experiment is conducted for 

synchronization periods of 30, 60, and 90 seconds. 

 

 5.3.3 Model Scalability Experiment.   

-Objective: This experiment measures the scalability of the simulation and 

determines the speedup associated with adding additional parallel processors.   

-Method: To look at the efficiency and scalability of the simulator, a suite of 

experiments are done to compare the run times of simulation with different sized swarms, 

varying number of CPUs, and varying swarm synchronization intervals. 

-Metric:  Speed-up is calculated as a means of determining the effect of greater 

parallelization on runtime.  Table 5.3 gives the various parallel configurations and 

problem sizes used in this experiment. 

  

Table 5.3 Parameters of Model Scalability Experiment.                                         
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5.4 Summary.  This chapter defined a comprehensive set of experiments designed to test 

the objectives of this research as defined in Section 1.3.  Each of the three system-level 

components is tested individually with particular emphasis on the swarm model.  

Additionally, visualizations are conducted with simulation data that provide intuitive 

experiment validation criteria.  Chapter 6 discusses the results of these experiments.    
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6.  Results 

 

This Chapter presents the results of experiments defined in Chapter 5.  Each section 

presents the data and graphical results of the corresponding experiment in Chapter 5.  

Interpretations of the results are presented with emphasis on causal relationships between 

specific model enhancements and the observed behavior.   

 

6.1 Validation of the Path Planner 

 6.1.1 Testing the Planner’s Ability to Minimize Climbing.  In this experiment, an 

artificial terrain field is created with a geometrically simple shape.  Figure 6.1 below 

shows the optimized route from Figure 5.1 and the resulting terrain avoidance behavior. 

                   

Figure 6.1 Path Planner Navigating Simple Terrain. 

The light (orange) area represents flat terrain at 100ft (MSL).  The darker (red) 

areas are flat terrain regions at 1100ft (MSL).  Note that planner-generated route avoids 

the high terrain to eliminate climbing. 
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6.1.2 Illustrating Tradeoffs between Cost and Risk.  Like the previous experiment, 

this one uses no threats in the scenario.  Risk avoidance is measured in terms of 

hideability i.e. the ability of the planner to create routes that minimize the vehicle’s 

visibility from surrounding locations.  The planner was run in multi-objective mode and 

the least cost and least risk solutions were captured and visualized.  Figure 6.2 shows the 

route of figure 5.2 optimized for cost minimization. 

   

Figure 6.2 Route Optimized for Cost. 

 The route in figure 6.2 was scored according to the fitness functions.  Its 

component scores are given in Table 6.1.  From the same run, the lowest risk solution is 

given below.  These two solutions represent the two extremes of the Pareto Front.  Figure 

6.3 shows a visualization of the lowest risk score. 
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Figure 6.3 Optimized Low Risk Solution. 

 

Table 6.1 Fitness Function Component Scores for Nellis Route. 

             
 

6.1.3 Comparing the Planner to the Terrain Following Optimizer.  This 

experiment compares the effectiveness of the path planner with AFRL’s TFO algorithm.  

This experiment was performed by running the problem instance Nellis Route 1 on the 

path planner and comparing the results with TFO’s solution.  It should be noted that TFO 

was not able to solve the problem directly.  Due to algorithmic constraints of TFO’s tree 

search, a maximum of 20nm are allowed between targets.  As a result, intermediate 

points had to be inserted between the targets before the route could be optimized. An 

additional limitation of TFO is that it optimizes paths between targets but does not 
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optimize connections between targets.  Therefore, TFO does not allow more than 45 

degrees of heading change between consecutive major waypoints.  The parallel path 

planner has neither of these constraints.  Figure 6.4 depicts the TFO solution to the 

problem instance Nellis Route 1. 

  

Figure 6.4 TFO Optimized Route: Nellis Route 1. 

 Several inferences can be made from inspection of Figure 6.4.  First, TFO’s 

approach to minimizing climbing involves seeking the lowest point possible.  Inspection 

of the path between points 1 and 7 show that higher terrain was avoided whenever 

possible.  This contrasts with the parallel path planner’s approach which focused on 

minimizing the total amount of climbing.  While TFO would avoid high terrain at any 

cost, the parallel path planner allows for high terrain so long as the cost of moving into 

the terrain is offset by reduced climbing and descending within the terrain.  Table 6.2 

compares the fitness evaluation of the TFO solution with the low cost and low risk Pareto 

front points of the parallel path planner. 
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Table 6.2 Nellis Route Evaluations. 

 

 Table 6.2 shows that both solutions of the parallel path planner had lower risk 

routes with shorter path lengths and lower climb costs.  While the two programs have a 

different approach to minimizing climbing, it should be noted that the hideability 

algorithm and its input data are identical in both programs.  Figure 6.4 also reveals a 

weakness in TFO’s application of the restriction on heading change.  Recall that 

consecutive target inputs in TFO must not result in a change in heading greater than 45 

degrees.  In the problem tested, this constraint was met.  However, as each segment was 

optimized independently, the resulting solution contains a heading change greater than 90 

degrees as seen around waypoint 10.    

 For completeness, the Pareto front for the same problem instance run as an 

MOEA is given in Figure 6.5. 

                                         
Figure 6.5 Pareto Front of Nellis Route Problem Instance. 
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 6.1.4 Efficiency of the Parallel Path Planner.  The experiments described in 

Section 5.1.4 reveal near linear speed-up.  This is due to the independence of the nodes, 

and low communications overhead.  Table 6.3 shows the runtimes in seconds for the 

various configurations tested. 

Table 6.3 Average Runtimes for Various Parallel Configurations. 

 
 

From Table 6.3 it is clear that the parallelization of the path planner results in near linear 

speedup with each increase in the number of processors.  This result is not unexpected as 

the parallel decomposition strategy has very low overhead.  It should be noted however, 

that the load balancing scheme and the use of multiple non-blocking receives as 

discussed in Section 4.6, contributed to the speedup.  In the absence of effective load 

balancing and non-blocking communication, the speedup would be reduced even with 

low-overhead parallel problem decomposition.   

 

6.2 Evaluating the Improved Swarm Simulator. 

6.2.1 Swarm Rules Experiments.  This section presents results of swarm rules 

experiments 1-5 as defined in Section 5.3.2.  The experiment was conducted from a 

single representative scenario.  In each experiment, a large swarm (n=100) is broken into 

5 sub swarms.  The largest of these sub-swarms has a size n=60.  The remaining sub-
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swarms each have a size n=10.  The simulation is run for 300 seconds, during which 

time, each swarm executes a series of turn maneuvers. 

- Experiment 1: Path Following only.  The addition of path following behavior 

had a significant impact on swarm cohesion.  Figures 6.6 and 6.7 present the results of 

experiment 1. 

                

Figure 6.6 Experiment 1: Average Neighborhood Size. 

At time t=0, the average neighborhood size is 3.8 which is consistent with the model.  

During the first 50 seconds, some minor deterioration is observed.  Significant 

deterioration is observed after 50 seconds.  Periodic spikes in the waveform reflect the 

effect of synchronization on neighborhood repair. 

                              

Figure 6.7 Experiment 1: Average Threshold Violation. 
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Figure 6.7 agrees with Figure 6.6.  Rules violations increasing in magnitude over time 

indicate deterioration of the swarm.  The effects of synchronization are seen more clearly 

during the first half of the simulation than in the second.  This suggests that 

synchronization has diminishing returns with increased swarm fan out. 

 These effects were far less prominent with the four smaller sub swarms than they 

were on the large swarm.  Data in figures 6.6 and 6.7 are taken from all swarm members.  

Figure 6.8 shows the threshold violations for the 50 swarm members assigned to the 4 

small sub swarms. 

                           

Figure 6.8 Experiment 1: Threshold Violations for Small Sun-swarms. 

The initial set of violations between t=1 and t=25 are misleading.  During this time, the 

swarm is performing a split operation.  Individual members continue to observe their 

previous neighbors as they pull away in pursuit of their targets.  Once the sub-swarms 

move away from one another the violations decrease.  It is also clearly seen that the small 

sub-swarms maintain consistent behavior throughout the duration of the simulation. 

 - Experiment 2:  Single Vertical Layer Swarm with Terrain Following.    This 

experiment revealed additional stress on the model’s ability to maintain swarm cohesion.  
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Once again, small sub-swarms were less affected by this enhancement.  Figures 6.9 and 

6.10 show the neighborhood deterioration and threshold violations experienced by the 

model with the addition of 3D terrain and terrain following behavior. 

   

Figure 6.9 Experiment 2: Neighborhood Deterioration.  

 

Figure 6.10 Experiment 2: Threshold Violation. 

Figure 6.10 reveals that the model achieved the same instability after 50 seconds that the 

previous experiment reached by the end of the simulation.  Figure 6.11 shows that rules 

violation increases with the addition of terrain following behavior for small swarm sizes.  

However, stability in the degree of violations is maintained after the split operation is 

performed. 
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Figure 6.11 Experiment 2: Threshold Violation for Small Sub-swarms. 

Figure 6.12 shows the extent of swarm fan out over time for this experiment. 

                     

Figure 6.12 Experiment 2: Swarm Fan Out. 

In Figure 6.12, the four smaller swarms appear left and right of the large swarm.  It can 

be seen that each of the small swarms maintain cohesive while the larger swarm 

experiences greater fan out.  Although fan out is obvious in the large swarm, it can be 

seen that the swarm still moves toward its destination, i.e. path following is maintained.   
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 - Experiment 3: Multi-Layer Swarms with Terrain Following.  In this experiment, 

the swarm consists if three vertical layers.  The addition of multiple layers increases the 

number of neighborhood connections.  Figures 6.13-6.15 present the results of 

experiment 3. 

                                    

Figure 6.13 Experiment 3: Neighborhood Deterioration. 

                                  

Figure 6.14 Experiment 3: Threshold Violations. 

                           

Figure 6.15 Experiment 3: Threshold Violations for Small Sub-swarms. 
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Comparison of the three graphs of experiment 3 with the graphs of experiment 2 show a 

significant increase in swarm stability with the addition of vertical swarm layers.  The 

degree of rules violation was about half of what it was in the single-layer experiment.  

Furthermore, the effects of synchronization on swarm stability are more visible with the 

layered model.  This is most obviously due to the increase in the number of neighborhood 

connections which drive the swarm behavior.    

 - Experiment 4: Multi-Layer Swarms in 2D Environment. In this experiment, the 

terrain following capability is removed from the model.  While there is no noticeable 

change in the average neighborhood size between experiments 3 and 4, there is an 

increase in the degree of threshold violation.  This phenomenon is curious given that in 

the 2-D multi-layered model, all vertical movement is aimed at maintaining swarm rules.  

In the 3-D model, vertical motion is generated with 80% emphasis on reaching the target 

and the remaining 20% focused on maintaining cohesion.  Figures 6.16-6.18 show the 

neighborhood deterioration and threshold violation from experiment 4.   

          

Figure 6.16 Experiment 4: Neighborhood Deterioration. 
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Figure 6.17 Experiment 4: Threshold Violation. 

 

 

Figure 6.18 Experiment 4: Threshold Violation for Small Sub-swarms. 

 Experiment 5: The Effect of Swarm Synchronization on Swarm Stability.  This 

experiment repeats the parameters of experiment 3, i.e. a multi-layered swarm with 3D 

terrain following.  In addition, the period at which the swarm synchronizes is varied from 

30 seconds (the baseline) to 90 seconds.  Increased synchronization has an associated cost 

in terms of both computation and communication.  Figure 6.19 shows the threshold 

violations for synchronization periods of 30, 60, and 90 seconds. 



 6-14 

 

Figure 6.19 Experiment 5: The Effects of Synchronization Period on Model Stability. 

 

 Figure 6.19 shows that little benefit is seen in increased synchronization.  There 

are two possible explanations for this: 1) after 60 seconds of simulation time, the swarm 

is too unstable to benefit from synchronization, and 2) the model forces synchronization 

during turn operations.  The scenario contains numerous turns in the swarm’s path.  

Additional scheduled synchronization may realize little additional benefit if forced 

synchronization occurs regularly. 

 

6.2.2. Simulation Scalability Experiment.  This experiment showed that the model 

has limited scalability. Parallelization of the simulation however, provides nearly linear 

speedup for larger problem sizes.  Table 6.4 and Figure 6.20 show the runtimes in 

seconds for a 20 minute sample of the simulation.   
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Table 6.4 Runtimes for Parallel Problem Execution. 

                            

         

Figure 6.20 Parallel Runtimes as a Function of Problem Size and Number of CPUs. 

 

 Table 6.4 and Figure 6.20 suggest limitations in the scalability of the model.  A 

significant increase in runtime is observed as the problem size increases from 160 to 320 

UAVs.  Speedup resulting from the additional processors is however nearly linear as a 

column-wise inspection of table 6.4 suggests.  The poor scalability may result from the 

changes in neighborhood resulting from the model’s instability.  As neighborhoods are 

reconfigured, the model requires direct communication among swarm members to adjust 
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their positions.  Chapter 7 presents some alternative communication methods from the 

literature. 

 

6.3. Summary.  This chapter presents the results of the complete experiment set defined 

in chapter 5.  Analysis of the data reveals opportunities for improvement of the parallel 

path planner and the swarm behavior model.  Chapter 7 provides conclusions on the 

effectiveness of the AFIT UAV Swarm Mission Planning and Parallel Simulation System 

and suggestion to improve the performance of the individual components.  
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7. Conclusion and Future Research 

 

 The overall goals of this research are met.  The AFIT UAV Swarm Mission 

Planning and Parallel Simulation System integrates three domains that have, in past 

efforts, been treated independently. The system architecture is capable of integrating 

additional functionality as it becomes available. This chapter addresses the satisfaction of 

the research objectives as defined in Chapter 1 and provides recommendations for future 

research. 

  

7.1 Satisfaction of Objectives.  Recalling the Chapter 1 objectives: 

      1.  Develop a multi-objective evolutionary algorithm for efficient path  

           planning  

      2. Develop an efficient parallel system that computes individual segments for      

          use in the GVR routing algorithm 

      3. Improve AFIT’s parallel swarm simulator by incorporating path-following     

         capabilities with existing swarm behavior and measure the effects of these  

         capabilities on swarm cohesiveness.  

The results presented in Chapter 6 show that objectives 1 and 2 are satisfied.  For 

example, the path planner generates paths that avoid terrain as seen in figure 6.1.  The set 

of solutions to the multi-objective routing problem defined in Section 5.1 produces a set 

of solutions with cost vs. risk tradeoffs.  These solutions have lower cost and associated 

risk than those produced by the Terrain Following Optimizer as seen in table 6.2.  The 

efficiency of the path planner’s parallelization scheme is clearly demonstrated in table 

6.3. 
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Objective 3 was satisfied in terms of the addition of path following behavior. The 

data in Section 6.2 show that the addition of path following and terrain following 

behaviors to the swarm model produces stable behavior for small swarm sizes (<12 

UAVs).  Instability was observed in the behavior of larger swarms (>50 UAVs) as a 

result of the path following behavior.  Additional research is needed to mitigate the side 

effects of these additional capabilities as they pertain to swarm cohesion in large swarm 

formations.  Possible insight was gained into the limitations of fixed-wing flight as an 

option for creating physically realizable swarms.  For example, slower cruise speeds and 

greater maneuverability may be needed to implement some of the lateral movement 

proposed by the swarm model.       

   

7.2 Improvements to the Path Planner.  Compared to the Terrain Following Optimizer 

(TFO), the path planner generates routes that are comparable.  Additionally, the turning 

violations generated by TFO and the restrictions on the spacing of targets were 

eliminated.  Future improvements to the path planner are needed regarding its ability to 

explore larger-sized areas for terrain and threat avoidance.  Currently, the search area for 

the placement of points is tightly restricted by the turn constraint.  This restriction causes 

the planner to behave more like a local search algorithm than a true optimization tool.  

More exploratory mutation operators such as Xiao’s Mutate 2 [67] that deletes multiple 

consecutive segments and replaces them with new ones could overcome this deficiency.   

 Another promising technique is to increase the search space through the use of 

“migrant” population members.  Originally developed for use in the Island model [61], 

migrant members are randomly initialized solutions added to the population at various 
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epochs of the evolutionary cycle.  The diversity added to the population would allow the 

planner to search different regions of the problem space. 

 As a multi-objective algorithm, the path planner creates an aggregation of the 

fitness characteristics into two fitness functions.  The elements of each function are 

parameterized. For example, the cost function combines the path length and climb cost 

with a parameterized weighting factor for each.  These parameters have been derived 

empirically in the development of TFO and they have not been well documented.  If the 

benefit of creating an MOEA is to provide the decision maker with trade-offs, then 

further research into the parameterization of the cost and risk elements would enhance 

this knowledge.  The parameters could be input directly by decision makers if a heuristic 

were available to guide the decision.  

 In their current form, both TFO and the parallel path planner have no conception 

of “time on target” in their approach to optimization.  Mission planning generally 

requires targets be reached by specified times.  Modifications to the path planner should 

allow either verification that time on target constraints can be met or that adjustments in 

the vehicle speed be evolved along path segments. 

 Yet another weakness of the TFO and parallel path planner is the lack of a 

parameterized vehicle model. Both systems are tuned to create path feasibility based on a 

liberal first-order approximation of the AC-130 gunship.  The internal constraints on path 

feasibility need to be fully parameterized so that any vehicle model can be used in 

conjunction with the path planner.  Clearly, more maneuverable vehicles would be 

subject to softer constraints, thus enabling greater levels of optimization in the path.  
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7.3 Improvements to the Parallel Swarm Simulator.  In transitioning the swarm 

behavior model, three major capabilities were added:  Path following, Terrain following, 

and 3-D swarm formation.  The results described in chapter 6 show that while path 

following allowed vehicles to reach their destinations, deterioration of swarm 

cohesiveness was observed, especially for larger swarms.  There are several explanations 

for this.  In the previous swarm model, the distribution of weights for cohesion and 

alignment vectors was nearly 50-50.  In the current model, Target vectors were given 

80% of the total vector weight while the total weight of all neighborhood-driven cohesion 

vectors was only 20%.  This limitation is placed in the model to serve as a place-holding 

constraint.  Large vehicles traveling at high speeds do not have the ability to create rapid 

lateral movement.  Therefore there are general physical limitations on the degree to 

which cohesion can be achieved while still exceeding the vehicle’s stall speed.  The 

place-holding constraint can be replaced by a realistic 2
nd

 order flight model.  With such a 

model, greater lateral movement to achieve cohesion could be achieved providing the 

vehicle had lower stall speeds.  A second hindrance to maintaining cohesion is the 

model’s limitation on the amount of increase or decrease on the thrust during a turn 

maneuver.  In the current model, a vehicle can only speed up or slow down by 10% 

during a simulation time step.  Again this is a place-holding constraint which takes into 

account in a general way the limitations on a vehicle’s ability to accelerate.  A second 

order vehicle model would provide realistic bounds on acceleration that would juxtapose 

required behavior against realistic capability.    

The greater deterioration of cohesion in large swarms versus small swarms 

suggests possible weaknesses in the nearest neighbor model.  While individual 
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neighborhoods are fairly well maintained, the neighborhood of neighborhoods within the 

large swarms clearly deteriorates.  Current research in control systems provides some 

additional possibilities to address this concern.  Bacconi proposes a Command Governor 

approach to maintain formations of satellites [1].  In his model, a command entity directs 

the movements of individuals.  The individual satellites use the commander’s position as 

a reference frame and adjust their position relative to the commander.  In a swarm of 

vehicles, a tiered command approach could be used to manage swarm movement.  Each 

neighborhood could have a central figure or “block captain” that directs local movement.  

This individual would then communicate to the next level of command above which 

would be a central figure responsible for directing the movement of a group of 

neighborhoods.  Using this tree-based hierarchy, the number of levels of communication 

would need to grow as the log of the swarm size.  

 

7.4 Future Simulation Capabilities.  In addition to improvements required in the current 

swarm model, additional capabilities would enhance the simulation.  The mission 

planning scenario in this research assumes a priori knowledge of all mission objectives 

and a fixed resource capability.  While it is reasonable to assume that missions are 

created to complete known objectives, additional information gained throughout the 

mission could alter the objectives.  Some swarm behavior models [42] [51] have a 

searching behavior defined that allows the swarm to seek out unknown targets and adjust 

behavior if and when they are detected.  While Price’s model is 2-D and does not include 

any path following capability, the self-organization and discovery capabilities would 

enhance the AFIT swarm simulator if they could be integrated with existing capabilities.  
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The result of such integration would be a swarm model that can perform a defined strike 

or reconnaissance mission while adapting behaviors to account for enemy engagement, 

attrition, and the discovery of targets of opportunity. 
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Appendix A.  Modified Convex Hull Algorithm 
 

 This appendix describes the development of the Modified Convex Hull Algorithm 

developed by J. Zaloudek.  The algorithm is used in the repair of paths to create 

additional way points such that no turn exceeds 45 degrees. 

Step 1. Place the octagon such that the midpoint, Pm is one vertex in it, chosen to be as 

close to the middle of the turn as possible. 

Step 2.  Find the convex hull (is like the "gift wrapping"). 

Step 3.  Traverse the CH route from Po to Pf  (this will require going through the CH 

route backwards if the point immediately after Po in the CH route is Pf). 

 

Placement of the octagon. Optimally the octagon could be placed such that Pm is 

half-way through the turn. The line (Ps-Pm) represents a normal to the turn at point Pm if 

Pm were exactly halfway through the turn.  Due to the grid, it will most likely not be 

possible to do this perfectly, but the angle of the line Ps Pm can be used to place the 

octagon as close as possible.  Figures A.1 and A.2 Illustrate the Octagon Placement         

 

Figure A.1 Octagon Placement: Normal Axis 

 

Po 

 Pf 

Pm 

Ps 
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Figure A.2 Placement of Octagonal Vertices on Midpoint 

To reference the octagon, two arrays of coordinate offsets are used. 

int xOctOffsetes = [0,-1,-2,-3,-3,-2,-1, 0]; 

 

int yOctOffsetes = [0, 1, 1, 0,-1,-2,-2,-1]; 

 

As an example, suppose Pm is (3,4) and the angle of Ps-Pm is 7π/4. Vertex 7 of the 

octagon would be chosen as the one to go on Pm.  Back out the location of vertex 0 by 

subtracting the offsets for vertex 7 from Pm’s coordinates: vert0 then is (3,5).  Going 

through the list and adding the offsets to vert0’s coordinates then specifies all the points 

in the octagon. 
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Appendix B.  Basic MPI Constructs 

This appendix describes the basic MPI constructs used in the parallel path planner.   

MPI_Init.  All MPI programs begin with a call to MPI_Init [Pacheco][Snir].  This 

function performs set-up operations that allow the MPI library routines to be used.  No 

MPI commands can precede this call.   

MPI_Finalize.  After the last MPI command is used, MPI_Finalize is called to 

clean up the system and de-allocate any memory used.  No MPI functions may follow the 

call to finalize. 

MPI_Comm_rank.  Most MPI programs have a master/slave organization.  

MPI_Comm_rank is a function that looks at all nodes in the program through a variable 

called MPI_COMM_WORLD and determines the rank or node number of the individual 

program instance.  An integer reference variable, &me, is passed to the function and is set 

with the rank of the individual.  By convention, the node with rank 0 is used as the 

master, while all others are used as worker nodes.  The rank variable is used in the 

decision tree to determine whether the program instance follows the code associated with 

the master node or that of a working node.  

MPI_Comm_size.  Since each node is assigned a number, the function 

MPI_Comm_size returns the number of nodes in the program.  The size or number of 

nodes is often used as a check to ensure that all nodes have completed their tasks. 

Blocking and non-blocking communication.  MPI allows for both blocking and 

non-blocking communication.  Blocking communication halts the sending program 

instance until the corresponding receive has completed.  In non-blocking communication, 
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the calling program continues to execute without waiting.  In this program, both blocking 

and non-blocking communication are used. 

MPI_Bcast.  To send common data such as terrain elevations to all nodes, the 

broadcast method is called by the master node.  The parameters of this function include 

buffer to be sent, the size, the data type, the sender, and the variable 

MPI_COMM_WORLD.  Broadcasts are non-blocking.  In order for the master to use the 

broadcast, the slave nodes must also call MPI_Bcast.  Both the broadcast sender and the 

receiver use the node of the caller as a parameter.  If the name of the node in the function 

call matches that of the calling node, the system interprets this as a send.  If calling node 

is different from the node in the function call, the system interprets this as a receive. 

MPI_Barrier.  In a parallel program it is often necessary to wait for all nodes to 

reach a common point before proceeding.  When a node reaches an MPI_Barrier call, it 

halts until all other nodes in MPI_COMM_WORLD reach the same point.   

MPI_Send.  This blocking function is the most primitive of the MPI send 

functions.  It is a point-to-point message that sends a buffer of data having a declared size 

and type to a designated receiver.    

MPI_Recv.  Also a blocking communication, this function halts the calling 

program until the specified buffer receives the message from the designated sender.  Use 

of this function is appropriate in cases where the calling program needs to process data in 

the buffer as its next task. 

MPI_Irecv.  When a program is waiting on multiple nodes to transmit, data, this 

non-blocking receive can be used.  It allows the receiving program to receive messages in 
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the order they come in.  Without this non-blocking ability, the calling program would 

have to block and receive each message in turn. 

MPI_Request.  When non-blocking receives are used, this accessory data structure 

provides a mechanism to check for a change in receipt status.  It is used with a 

MPI_Status flag that is set to true when the corresponding MPI_Request has been met. 

MPI_Test.  This function uses both the MPI_Request and MPI_Status flag associated 

with the non-blocking receive.  MPI_Test is called and if the status flag associated with 

the MPI_Request is set to true, then the receive has been completes and the calling 

program can begin processing the data in the receive buffer. 
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